• 투고 : 2014.11.19
  • 발행 : 2015.09.30


Let (${\Omega}$, S) be an association scheme where ${\Omega}$ is a non-empty finite set and S is a partition of ${\Omega}{\times}{\Omega}$. For a positive integer k we say that (${\Omega}$, S) is k-equivalenced if each non-diagonal element of S has valency k. In this paper we focus on 4-equivalenced association schemes, and prove that they are transitive.


  1. Z. Arad, Y. Erez, and M. Muzychuk, On even generalized table algebras, J. Algebraic Combin. 17 (2003), no. 2, 163-170.
  2. Z. Arad, Y. Erez, and M. Muzychuk, On homogeneous standard integral table algebras of degree 4, Comm. Algebra 34 (2006), no. 2, 463-519.
  3. E. Bannai and T. Ito, Algebraic Combinatorics. I, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984.
  4. C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs, CRC press, 2010.
  5. E. R. van Dam, A characterization of association schemes from affine spaces, Des. Codes Cryptogr. 21 (2000), no. 1-3, 83-86.
  6. J. D. Dixon and B. Mortimer, Permutation Groups, Graduate Texts in Mathematics, Vol. 163, Springer-Verlag, New York, 1996.
  7. A. Hanaki and I. Miyamoto, Classification of association schemes with small vertices, published on web:
  8. M. Hirasaka, K.-T. Kim, and J. R. Park, Every 3-equivalenced association scheme is Frobenius, J. Algebraic Combin. 41 (2015), no. 1, 217-228.
  9. M. Muzychuk and I. Ponomarenko, On pseudocyclic association schemes, Ars Math. Contemp. 5 (2012), no. 1, 1-25.
  10. M. Muzychuk and P.-H. Zieschang, On association schemes all elements of which have valency 1 or 2, Discrete Math. 308 (2008), no. 14, 3097-3103.
  11. P.-H. Zieschang, An algebraic approach to association schemes, Lecture Notes in Math-ematics, Vol. 1628, Springer-Verlag, Berlin, 1996.
  12. P.-H. Zieschang, Theory of Association Schemes, Springer Monograph in Mathematics, Springer-Verlag, Berlin, 2005.