DOI QR코드

DOI QR Code

A REMARK ON UNIQUE CONTINUATION FOR THE CAUCHY-RIEMANN OPERATOR

  • SEO, IHYEOK (DEPARTMENT OF MATHEMATICS SUNGKYUNKWAN UNIVERSITY)
  • Received : 2015.01.20
  • Published : 2015.09.30

Abstract

In this note we obtain a unique continuation result for the differential inequality ${\mid}\bar{\partial}u{\mid}{\leq}{\mid}Vu{\mid}$, where $\bar{\partial}=(i{\partial}_y+{\partial}_x)/2$ denotes the Cauchy-Riemann operator and V (x, y) is a function in $L^2(\mathbb{R}^2)$.

References

  1. T. Carleman, Sur un probleme d'unicite pour les systemes d'equations aux derivees partielles a deux variables independantes, Ark. Mat. Astr. Fys. 26 (1939), no. 17, 1-9.
  2. L. Grafakos, Classical Fourier Analysis, Springer, New York, 2008.
  3. D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrodinger operators, Ann. of Math. 121 (1985), no. 3, 463-494. https://doi.org/10.2307/1971205
  4. C. E. Kenig, Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuations, Harmonic analysis and partial differential equations (El Escorial, 1987), 69-90, Lecture Notes in Math. 1384, Springer, Berlin, 1989.
  5. C. E. Kenig and N. Nadirashvili, A counterexample in unique continuation, Math. Res. Lett. 7 (2000), no. 5-6, 625-630. https://doi.org/10.4310/MRL.2000.v7.n5.a8
  6. C. E. Kenig and J.-N. Wang, Quantitative uniqueness estimates for second order elliptic equations with unbounded drift, Math. Res. Lett. 22 (2015), no. 4, 1159-1175. https://doi.org/10.4310/MRL.2015.v22.n4.a10
  7. H. Koch and D. Tataru, Sharp counterexamples in unique continuation for second order elliptic equations, J. Reine Angew. Math. 542 (2002), 133-146.
  8. N. Mandache, A counterexample to unique continuation in dimension two, Comm. Anal. Geom. 10 (2002), no. 1, 1-10. https://doi.org/10.4310/CAG.2002.v10.n1.a1
  9. T. H. Wolff, A property of measures in Rn and an application to unique continuation, Geom. Funct. Anal. 2 (1992), no. 2, 225-284. https://doi.org/10.1007/BF01896975
  10. T. H. Wolff, Recent work on sharp estimates in second-order elliptic unique continuation problems, J. Geom. Anal. 3 (1993), no. 6, 621-650. https://doi.org/10.1007/BF02921325