Particle size distributions and concentrations above radiators in indoor environments: Exploratory results from Xi'an, China

Chen, Xi;Li, Angui

  • Received : 2015.05.28
  • Accepted : 2015.06.30
  • Published : 2015.09.30


Particulate matter in indoor environments has caused public concerns in recent years. The objective of this research is to explore the influence of radiators on particle size distributions and concentrations. The particle size distributions as well as concentrations above radiators and in the adjacent indoor air are monitored in forty-two indoor environments in Xi'an, China. The temperatures, relative humidity and air velocities are also measured. The particle size distributions above radiators at ten locations are analyzed. The results show that the functional difference of indoor environments has little impact on the particle size distributions above radiators. Then the effects of the environmental parameters (particle concentrations in the adjacent indoor air, temperatures, relative humidities and air velocities) on particle concentrations above radiators are assessed by applying multiple linear regression analysis. Three multiple linear regression models are established to predict the concentrations of $PM_{10}$, $PM_{2.5}$ and $PM_1$ above radiators.


Environmental parameters;Multiple linear regression;Particle size distribution;Particulate matter;Radiator


  1. Robinson J, Nelson WC. National human activity pattern survey data base. Research Triangle Park: United States Environmental Protection Agency; 1995
  2. Morawska L, Salthammer T. Indoor environment: airborne particles and settled dust. John Wiley & Sons; 2006.
  3. Krupinska B, Van Grieken R, De Wael K. Air quality monitoring in a museum for preventive conservation: Results of a three-year study in the Plantin-Moretus Museum in Antwerp, Belgium. Microchem. J. 2013;110:350-360.
  4. Shehabi A, Horvath A, Tschudi W, Gadgil AJ, Nazaroff WW. Particle concentrations in data centers. Atmos. Environ. 2008;42:5978-5990.
  5. Salthammer T, Fauck C, Schripp T, Meinlschmidt P, Willenborg S, Moriske HJ. Effect of particle concentration and semi-volatile organic compounds on the phenomenon of 'black magic dust' in dwellings. Build. Environ. 2011;46:1880-1890.
  6. Laiman R, He CR, Mazaheri M, et al. Characteristics of ultrafine particle sources and deposition rates in primary school classrooms. Atmos. Environ. 2014;94:28-35.
  7. Cao Z, Xu F, Covaci A, et al. Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure. Environ. Sci. Technol. 2014;48:8839-8846.
  8. Liu C, Zhang Y, Weschler CJ. The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments. Sci. Total. Environ. 2014;497-498:401-411.
  9. Qian J, Peccia J, Ferro AR. Walking-induced particle resuspension in indoor environments. Atmos. Environ. 2014;89:464-481.
  10. Nazaroff WW, Cass GR. Protecting museum collections from soiling due to the deposition of airborne particles. Atmospheric Environment. Part A. General Topics 1991;25:841-852.
  11. O'Shaughnessy PT. Occupational health risk to nanoparticulate exposure. Environ. Sci. Process. Impacts. 2013;15:49-62.
  12. Kliucininkas L, Krugly E, Stasiulaitiene I, et al. Indoor-outdoor levels of size segregated particulate matter and mono/polycyclic aromatic hydrocarbons among urban areas using solid fuels for heating. Atmos. Environ. 2014;97:83-93.
  13. Lioy PJ, Wainman T, Zhang JF, Goldsmith S. Typical household vacuum cleaners: The collection efficiency and emissions characteristics for fine particles. J. Air. Waste. Manag. Assoc. 1999;49:200-206.
  14. Dacunto PJ, Cheng KC, Acevedo-Bolton V, et al. Real-time particle monitor calibration factors and $PM_{2.5}$ emission factors for multiple indoor sources. Environ. Sci-Proc. Imp. 2013;15:1511-1519.
  15. Stabile L, Fuoco FC, Marini S, Buonanno G. Effects of the exposure to indoor cooking-generated particles on nitric oxide exhaled by women. Atmos. Environ. 2015;103:238-246.
  16. Armendariz-Arnez C, Edwards RD, Johnson M, Rosas IA, Espinosa F, Masera OR. Indoor particle size distributions in homes with open fires and improved Patsari cook stoves. Atmos. Environ. 2010;44:2881-2886.
  17. Hoek G, Kos G, Harrison R, et al. Indoor-outdoor relationships of particle number and mass in four European cities. Atmos. Environ. 2008;42:156-169.
  18. Alves C, Calvo AI, Marques L, et al. Particulate matter in the indoor and outdoor air of a gymnasium and a fronton. Environ. Sci. Pollut. R 2014;21:12390-12402.
  19. Sangiorgi G, Ferrero L, Ferrini BS, et al. Indoor airborne particle sources and semi-volatile partitioning effect of outdoor fine PM in offices. Atmos. Environ. 2013;65:205-214.
  20. Challoner A, Gill L. Indoor/outdoor air pollution relationships in ten commercial buildings: $PM_{2.5}$ and $NO_2$. Build. Environ. 2014;80:159-173.
  21. Buczynska AJ, Krata A, Van Grieken R, et al. Composition of $PM_{2.5}$ and $PM_1$ on high and low pollution event days and its relation to indoor air quality in a home for the elderly. Sci. Total. Environ. 2014;490:134-143.
  22. Zhao B, Wu J. Particle deposition in indoor environments: Analysis of influencing factors. J. Hazard. Mater. 2007;147:439-448.
  23. Isaxon C, Gudmundsson A, Nordin EZ, et al. Contribution of indoor-generated particles to residential exposure. Atmos. Environ. 2015;106:458-466.
  24. Tseng CH, Wang HC, Xiao NY, Chang YM. Examining the feasibility of prediction models by monitoring data and management data for bioaerosols inside office buildings. Build. Environ. 2011;46:2578-2589.
  25. Elbayoumi M, Ramli NA, Yusof NFFM, Bin Yahaya AS, Al Madhoun W, Ul-Saufie AZ. Multivariate methods for indoor $PM_{10}$ and $PM_{2.5}$ modelling in naturally ventilated schools buildings. Atmos. Environ. 2014;94:11-21.
  26. Gauvin S, Reungoat P, Cassadou S, et al. Contribution of indoor and outdoor environments to $PM_{2.5}$ personal exposure of children - VESTA study. Sci. Total. Environ. 2002;297:175-181.
  27. Kousa A, Oglesby L, Koistinen K, Kunzli N, Jantunen M. Exposure chain of urban air $PM_{2.5}$ - associations between ambient fixed site, residential outdoor, indoor, workplace and personal exposures in four European cities in the EXPOLIS-study. Atmos. Environ. 2002;36:3031-3039.
  28. Kang Y, Zhong K, Lee S. Relative levels of indoor and outdoor particle number concentrations in a residential building in Xi'an. China particuology 2006;4:342-345.
  29. Wang B, Zhao B, Chen C. A simplified methodology for the prediction of mean air velocity and particle concentration in isolation rooms with downward ventilation systems. Build. Environ. 2010;45:1847-1853.
  30. Ruths M, von Bismarck-Osten C, Weber S. Measuring and modelling the local-scale spatio-temporal variation of urban particle number size distributions and black carbon. Atmos. Environ. 2014;96:37-49.
  31. Spilak MP, Frederiksen M, Kolarik B, Gunnarsen L. Exposure to ultrafine particles in relation to indoor events and dwelling characteristics. Build. Environ. 2014;74:65-74.
  32. Grimm Aerosol. Portable Laser Aerosolspectrometer and Dust Monitor Model 1.108/1.109. Germany: Grimm Aerosol Technlk GmbH&Co.KG; 2007
  33. Massey D, Kulshrestha A, Masih J, Taneja A. Seasonal trends of $PM_{10},\;PM_{5.0},\;PM_{2.5}\;&\;PM_{1.0}$ in indoor and outdoor environments of residential homes located in North-Central India. Build. Environ. 2012;47:223-231.
  34. Hassanvand MS, Naddafi K, Faridi S, et al. Indoor/outdoor relationships of $PM_{10},\;PM_{2.5}\;and\;PM_1$ mass concentrations and their water-soluble ions in a retirement home and a school dormitory. Atmos. Environ. 2014;82:375-382.
  35. TSI incorporated. $VelociCalc^{(R)}$ Plus Air Velocity Meter (Models 8384/8384A/8385/8385A/8386/8386A): Operation and Service Manual. USA: TSI Incorporated; 2010.
  36. Vlachogianni A, Kassomenos P, Karppinen A, Karakitsios S, Kukkonen J. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and $PM_{10}$ in Athens and Helsinki. Sci. Total. Environ. 2011;409:1559-1571.
  37. Tran DT, Alleman LY, Coddeville P, Galloo JC. Indoor-outdoor behavior and sources of size-resolved airborne particles in French classrooms. Build. Environ. 2014;81:183-191.
  38. Balachandran S, Meena BR, Khillare PS. Particle size distribution and its elemental composition in the ambient air of Delhi. Environ. Int. 2000;26:49-54.
  39. Chatoutsidou SE, Ondracek J, Tesar O, Tørseth K, Zdimal V, Lazaridis M. Indoor/outdoor particulate matter number and mass concentration in modern offices. Build. Environ. 2015;92:462-474.
  40. Lai ACK. Particle deposition indoors: a review. Indoor. Air. 2002;12:211-214.
  41. Sarwar G, Corsi R, Allen D, Weschler C. The significance of secondary organic aerosol formation and growth in buildings: experimental and computational evidence. Atmos. Environ. 2003;37:1365-1381.
  42. Fromme H, Twardella D, Dietrich S, et al. Particulate matter in the indoor air of classrooms - exploratory results from Munich and surrounding area. Atmos. Environ. 2007;41:854-866.


Supported by : Henan University of Technology