DOI QR코드

DOI QR Code

Implementation of Massive FDTD Simulation Computing Model Based on MPI Cluster for Semi-conductor Process

반도체 검증을 위한 MPI 기반 클러스터에서의 대용량 FDTD 시뮬레이션 연산환경 구축

  • 이승일 (충남대학교 컴퓨터공학과) ;
  • 김연일 (충남대학교 컴퓨터공학과) ;
  • 이상길 (충남대학교 컴퓨터공학과) ;
  • 이철훈 (충남대학교 컴퓨터공학과)
  • Received : 2015.03.10
  • Accepted : 2015.08.05
  • Published : 2015.09.28

Abstract

In the semi-conductor process, a simulation process is performed to detect defects by analyzing the behavior of the impurity through the physical quantity calculation of the inner element. In order to perform the simulation, Finite-Difference Time-Domain(FDTD) algorithm is used. The improvement of semiconductor which is composed of nanoscale elements, the size of simulation is getting bigger. Problems that a processor such as CPU or GPU cannot perform the simulation due to the massive size of matrix or a computer consist of multiple processors cannot handle a massive FDTD may come up. For those problems, studies are performed with parallel/distributed computing. However, in the past, only single type of processor was used. In GPU's case, it performs fast, but at the same time, it has limited memory. On the other hand, in CPU, it performs slower than that of GPU. To solve the problem, we implemented a computing model that can handle any FDTD simulation regardless of size on the cluster which consist of heterogeneous processors. We tested the simulation on processors using MPI libraries which is based on 'point to point' communication and verified that it operates correctly regardless of the number of node and type. Also, we analyzed the performance by measuring the total execution time and specific time for the simulation on each test.

Keywords

Parallel Computing;Hybrid Computing;MPI;CUDA

Acknowledgement

Supported by : 충남대학교

References

  1. 데이비드 B. 커크, 원메이 W. 후, 대규모 병렬 프로세서 프로그래밍 CUDA를 이용한 실용적 접근, BJ퍼블릭, 2010.
  2. NVIDIA CUDA Programming Guide V2.0, http://kr.nvidia.com/object/cuda_develop_kr.htmll, accessed on 13 April 2009.
  3. 이홍석, 김정한, 이승우, 이식, MPI 병렬 프로그래밍 : 멀티코어 시대에 꼭 알아야할, 어드북스, 2010.
  4. 고영관, 고속 연산처리를 위한 CUDA 기반의 병렬 처리 소프트웨어 설계 및 구현, 충남대학교 학위논문, 2013.
  5. 박종현, 이정수, 김준성 "클러스터 환경의 병렬처리를 통한 FDTD 알고리즘의 성능 향상 분석", 대한전자공학회 추계학술대회, 제32권, 제2호.
  6. David M. Sheen, Sami M. A, and Mohamed D. A., "Application of the three-dimensional Finite-Difference Time-Domainn method to the analysis of planar microstrip circuit," IEEE Transaction on Microwaqve Theory and Techniques, Vol.38, pp.849-857, 1990. https://doi.org/10.1109/22.55775
  7. https://developer.nvidia.com/gpudirect
  8. 정복재, "CUDA로 구현한 FDTD 알고리즘의 OpenMP기술 적용 및 성능 측정", 한국컴퓨터정보학회 통계학술대회 논문집, 제21권, 제1호.
  9. 조용희, "OpenMP, MPI, CUDA를 이용한 안테나 수치 계산 가속화", 한국콘텐츠학회 종합학술대회 논문집, 2014.
  10. Cameron Hughes and Tracey Hughes, C++ 병렬.분산 프로그래밍, 정보문화사.
  11. 정영훈, CUDA 병렬 프로그래밍, 프리랙, 2011.