DOI QR코드

DOI QR Code

Numerical Thermal Analysis of IGBT Module Package for Electronic Locomotive Power-Control Unit

전동차 추진제어용 IGBT 모듈 패키지의 방열 수치해석

  • Suh, Il Woong (Graduate School of NID Fusion Technology, Seoul National Univ. of Science and Technology) ;
  • Lee, Young-ho (Woojin Industrial System Co., Ltd.) ;
  • Kim, Young-hoon (SP Semiconductor & Communication Co., Ltd.) ;
  • Choa, Sung-Hoon (Graduate School of NID Fusion Technology, Seoul National Univ. of Science and Technology)
  • 서일웅 (서울과학기술대학교 NID융합기술대학원) ;
  • 이영호 (우진산전(주)) ;
  • 김영훈 (에스피반도체 통신(주)) ;
  • 좌성훈 (서울과학기술대학교 NID융합기술대학원)
  • Received : 2015.05.26
  • Accepted : 2015.07.04
  • Published : 2015.10.01

Abstract

Insulated-gate bipolar transistors (IGBTs) are the predominantly used power semiconductors for high-current applications, and are used in trains, airplanes, electrical, and hybrid vehicles. IGBT power modules generate a considerable amount of heat from the dissipation of electric power. This heat generation causes several reliability problems and deteriorates the performances of the IGBT devices. Therefore, thermal management is critical for IGBT modules. In particular, realizing a proper thermal design for which the device temperature does not exceed a specified limit has been a key factor in developing IGBT modules. In this study, we investigate the thermal behavior of the 1200 A, 3.3 kV IGBT module package using finite-element numerical simulation. In order to minimize the temperature of IGBT devices, we analyze the effects of various packaging materials and different thickness values on the thermal characteristics of IGBT modules, and we also perform a design-of-experiment (DOE) optimization

Keywords

Power Device;IGBT Module Package;Thermal Management;Thermal Design;Thermal Analysis

Acknowledgement

Supported by : 국토교통부

References

  1. Wang, Y., Wu, Y., Jones, S., Dai, X. and Liu, G., 2014, "Challenges and Trends of High Power IGBT Module Packaging," Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), pp. 1-7.
  2. Jung, C. H., Chung, Y. S. and Lee, H. W., 2009, "Investigation on Thermal Characteristics of Heat Sinks for Power Module Using STM," J. Mechanicl Science and Technology, Vol. 23, pp. 686-697 https://doi.org/10.1007/s12206-008-1217-8
  3. Kim, K. S., Choi, D. H. and Jung, S. B., 2014, "Overview on Thermal Management Technology for High Power Device Packaging," J. Microelectron. Packag. Soc., 21(2), pp. 13-21.
  4. Lu, H., Bailey, C. and Yin, C., 2009, "Design for Reliability of Power Electronics Modules," Microelectron. Reliab., Vol. 49, No. 9-11, pp. 1250-1255. https://doi.org/10.1016/j.microrel.2009.07.055
  5. Yoon, J. W., Bang, J. H., Ko, Y. H., Yoo, S. H., Kim, J. K. and Lee, C. W., 2014 "Power Module Packaging Technology with Extended Reliability for Electric Vehicle Application," J. Microelectron. Packag. Soc., 21(4), pp. 1-13.
  6. Schilling, O., Schafer, M., Mainka, K., Thoben, M. and Sauerland, F., 2012, "Power Cycling Testing and FE Modelling Focused on Al Wire Bond Fatigue in High Power IGBT Modules," Microelectron. Reliab., Vol. 52, pp. 2347-2352. https://doi.org/10.1016/j.microrel.2012.06.095
  7. Marcault, E., Breil, M., Bourennane, A., Tounsi, P. and Dupuy, P., 2011, "Impact of the Solder Joint Ageing on IGBT I-V Characteristics Using 2D Physical Simulations," Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, pp. 1-4.
  8. Liao, L. L., Hung, T. Y., Liu, C. K., Li, W., Dai, M. J. and Chiang, K. N., 2014, "Electro-Thermal Finite Element Analysis and Verification of Power Module with Aluminum Wire," Microelectronic Engineering, Vol. 120, pp. 114-120. https://doi.org/10.1016/j.mee.2013.12.033
  9. Hung, T. Y., Chiang, S. Y., Chou, C. Y., Chiu, C. C. and Chiang, K. N., 2010, "Thermal Design and Transient Analysis of Insulated Gate Bipolar Transistors of Power Module," Thermal and Thermomechanical Phenomena in Electronic Systems, 12th IEEE Intersociety Conference, pp. 1-5.
  10. Ishizaki, T., Satoh, T., Kuno, A., Tane, A., Yanase, M., Osawa, F. and Yamada, Y., 2013, "Thermal Characterizations of Cu Nanoparticle Joints for Power Semiconductor Devices," Microelectron. Reliab., Vol. 53, pp. 1543-1547. https://doi.org/10.1016/j.microrel.2013.07.042
  11. Hocine, R., Stambouli, A. B. and Saidane, A., 2003, "A Three-Dimensional TLM Simulation Method for Thermal Effect in High Power Insulated Gate Bipolar Transistors," Microelectronic Engineering, Vol. 65, pp. 293-306. https://doi.org/10.1016/S0167-9317(02)00903-6
  12. Trigkidis, G., Bousbaine, A. and Thorn, R., 2006, "Thermal Modelling of IGBT Devices" Proceedings of the 41st International, Universities Power Engineering Conference (UPEC), Vol. 2, pp. 584-588.
  13. Wang, Z., Qiao, W., Tian, B. and Qu, L., 2014, "An Effective Heat Propagation Path-Based Online Adaptive Thermal Model for IGBT Modules," Application Power Electronics Conference and Exposition (APEC), pp. 513-518.
  14. Godbold, C. V., Sankaran, V. A. and Hudgins, J. L., 1995, "Thermal Analysis of High Power Modules," Applied Power Electronics Conference and Exposition (APEC), Vol. 1, pp. 140-146
  15. Nishimura, Y., Morozumi, A., Mochizuki, E. and Takahashi, Y., 2006, "Investigations of all Lead Free IGBT Module Structure with Low Thermal Resistance and High Reliability," Power Semiconductor Devices and IC's (ISPSD), pp. 1-4.
  16. Wang, Z., Qiao, W., Tian, B. and Qu, L., 2014, "An Effective Heat Propagation Path-Based Online Adaptive Thermal Model for IGBT Modules," Applied Power Electronics Conference and Exposition (APEC), pp. 513-518.
  17. Ishizaki, T., Satoh, T., Kuno, A., Tane, A., Yanase, M., Osawa, F. and Yamada, Y., 2013, "Thermal Characterizations of Cu Nanoparticle Joints for Power Semiconductor Devices," Microelectron Reliab., Vol. 53, pp. 1543-1547. https://doi.org/10.1016/j.microrel.2013.07.042
  18. Kwak, Y. H., Lee, Y.K., Cho, J. H., Hong, C. S., Kim, K. S. and Suh, B. S., 2013, " Numerical Study on Thermal Characteristics of High Power Semiconductor Modules," Transactions of Korean Institute of Power Electronics, Vol. 7, pp. 87-90.
  19. Xu, Y. and Hopkins, D. C., 2014, "Misconception of Thermal Spreading Angle and Misapplication to IGBT Power Modules," Applied Power Electronics Conference and Exposition (APEC), pp. 545-551.