DOI QR코드

DOI QR Code

Peltier Heating-Assisted Low Temperature Plasma Ionization for Ambient Mass Spectrometry

  • Lee, Hyoung Jun ;
  • Oh, Ji-Seon ;
  • Heo, Sung Woo ;
  • Moon, Jeong Hee ;
  • Kim, Jeong-hoon ;
  • Park, Sung Goo ;
  • Park, Byoung Chul ;
  • Kweon, Gi Ryang ;
  • Yim, Yong-Hyeon
  • Received : 2015.09.02
  • Accepted : 2015.09.07
  • Published : 2015.09.30

Abstract

Low temperature plasma (LTP) ionization mass spectrometry (MS) is one of the widely used ambient analysis methods which allows soft-ionization and rapid analysis of samples in ambient condition with minimal or no sample preparation. One of the major advantages of LTP MS is selective analysis of low-molecular weight, volatile and low- to medium-polarity analytes in a sample. On the contrary, the selectivity for particular class of compound also implies its limitation in general analysis. One of the critical factors limiting LTP ionization efficiency is poor desorption of analytes with low volatility. In this study, a home-built LTP ionization source with Peltier heating sample stage was constructed to enhance desorption and ionization efficiencies of analytes in a sample and its performance was evaluated using standard mixture containing fatty acid ethyl esters (FAEEs). It was also used to reproduce the previous bacterial identification experiment using pattern-recognition for FAEEs. Our result indicates, however, that the bacterial differentiation from FAEE pattern recognition using LTP ionization MS still has many limitations.

Keywords

low temperature plasma ionization;Peltier heating;volatility;fatty acid ethyl ester

References

  1. Chen, W. D.; Hou, K. Y.; Xiong, X. C.; Jiang, Y.; Zhao, W. D.; Hua, L.; Chen, P.; Xie, Y. Y.; Wang, Z. X.; Li, H. Y. Analyst 2013, 138, 5068. https://doi.org/10.1039/c3an00555k
  2. Zhang, J. I.; Costa, A. B.; Tao, W. A.; Cooks, R. G. Analyst 2011, 136, 3091. https://doi.org/10.1039/c0an00940g
  3. Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Science 2004, 306, 471. https://doi.org/10.1126/science.1104404
  4. Cody, R. B.; Laramée, J. A.; Durst, H. D. Anal. Chem. 2005, 77, 2297. https://doi.org/10.1021/ac050162j
  5. Venter, A. R.; Douglass, K. A.; Shelley, J. T.; Hasman, Jr. G.; Honarvar, E. Anal. Chem. 2014, 86, 233. https://doi.org/10.1021/ac4038569
  6. Harper, J. D.; Charipar, N. A.; Mulligan, C. C.; Zhang, X. R.; Cooks, R. G. Anal. Chem. 2008, 80, 9097. https://doi.org/10.1021/ac801641a
  7. Salter, T. L.; Bunch, J.; Gilmore, I. S. Anal. Chem. 2014, 86, 9264. https://doi.org/10.1021/ac502363v
  8. Garcia-Reyes, J. F.; Harper, J. D.; Salazar, Z. A.; Charipar, N. A.; Ouyang, Z.; Cooks, R. G. Anal. Chem. 2011, 83, 1084. https://doi.org/10.1021/ac1029117

Cited by

  1. Comparison of desorption enhancement methods in the low temperature plasma ionization mass spectrometry for detecting fatty acids in Drosophila vol.17, pp.8, 2017, https://doi.org/10.1016/j.cap.2017.04.017
  2. A simple desorption atmospheric pressure chemical ionization method for enhanced non-volatile sample analysis vol.1002, 2018, https://doi.org/10.1016/j.aca.2017.11.033
  3. Study of Photocatalytic Nano-Particle Effects on the Low Temperature Plasma Ionization Mass Spectrometry pp.1879-1123, 2018, https://doi.org/10.1007/s13361-018-2059-y
  4. Analyte and matrix evaporability – key players of low-temperature plasma ionization for ambient mass spectrometry vol.410, pp.21, 2018, https://doi.org/10.1007/s00216-018-1152-1
  5. Response in Ambient Low Temperature Plasma Ionization Compared to Electrospray and Atmospheric Pressure Chemical Ionization for Mass Spectrometry vol.2018, pp.1687-8779, 2018, https://doi.org/10.1155/2018/5647536