DOI QR코드

DOI QR Code

Studies on Mixed Micellizations of Sodium Dodecanoate and Sodium Octanoate by Means of Electric Conductivity and Light Scattering

전기 전도도 및 광산란법에 의한 나트륨 도데카노에이트와 나트륨 옥타노에이트의 혼합미셀화 연구

  • Park, Il Hyun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology.) ;
  • Jang, Han Woong (Department of Polymer Science and Engineering, Kumoh National Institute of Technology.) ;
  • Baek, Seung Hwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology.)
  • 박일현 (금오공과대학교 고분자공학과) ;
  • 장한웅 (금오공과대학교 고분자공학과) ;
  • 백승환 (금오공과대학교 고분자공학과)
  • Received : 2015.03.27
  • Accepted : 2015.05.19
  • Published : 2015.08.31

Abstract

The critical micelle concentration (CMC), the counter ion binding constant (B) and the aggregation number (N* ) for the mixed micellization of sodium dodecanoate and sodium n-octanoate as two anionic surfactants have been investigated by means of electric conductivity and light scattering. As its experimental results are found to be deviated from ideal mixed model, thus two different kinds of regular solution models such as Rubingh and Motomura are used for interpreting our experimental data. The stability of the mixed micelles has been confirmed from the negative values of the standard Gibbs energy of mixed micellization ΔGmicel,0 over all compositions and the measured values of ΔGmicel,0 agreed with the theoretical ones within the experimental error.

Keywords

Mixed surfactant;Critical micelle concentration;Rubingh model;Light scattering;Aggregation number

References

  1. Rosen, M. J. Prog. Colloid Polym. Sci. 1994, 95, 39. https://doi.org/10.1007/BFb0115703
  2. Schulz, P. C.; Rodriguez, J. L.; Minardi, R. M.; Sierra, M. B.; Morini, M. A. J. Colloid Interface Sci. 2006, 303, 264. https://doi.org/10.1016/j.jcis.2006.07.012
  3. Berr, S. S.; Jones, R. R. M. J. Phys. Chem. 1989, 93, 2555. https://doi.org/10.1021/j100343a062
  4. Gruen, D. W. J. Phys. Chem. 1985, 89, 146. https://doi.org/10.1021/j100247a032
  5. Tanford, C. J. Phys. Chem. 1974, 78, 2469. https://doi.org/10.1021/j100617a012
  6. Shanks, P.C.; Franses, E. I. J. Phys. Chem. 1992, 96, 1794. https://doi.org/10.1021/j100183a055
  7. Puvvada, S.; Blankschtein, D. J. J. Phys. Chem. 1992, 96, 5567. https://doi.org/10.1021/j100192a070
  8. Puvvada, S.; Blankschtein, D. J. J. Phys. Chem. 1992, 96, 5579. https://doi.org/10.1021/j100192a071
  9. Park, I. J.; Lee, B. H. J. Korea Chem. Soc. 2009, 53, 491. https://doi.org/10.5012/jkcs.2009.53.5.491
  10. Park, I. J.; Lee, B. H. J. Korea Chem. Soc. 2011, 55, 379. https://doi.org/10.5012/jkcs.2011.55.3.379
  11. Lee, N. M.; Lee, B. H. J. Korea Chem. Soc. 2012, 56, 556. https://doi.org/10.5012/jkcs.2012.56.5.556
  12. Campbell, A. N.; Lakshminarayanan, G. R. Can. J. Chem, 1965, 43, 1729. https://doi.org/10.1139/v65-228
  13. Zemb, T.; Drifford, M.; Hayoun, M.; Jehanno, A. J. Phy. Chem. 1983, 87, 4524. https://doi.org/10.1021/j100245a037
  14. Medoš, Ž.; Bešter-Rogač, M. J. Chem. Thermodynamics 2015, 83, 117. https://doi.org/10.1016/j.jct.2014.12.011
  15. de Moura, A. F.; Freitas, L. C. G. Chem. Phy. Lett. 2005, 411, 474. https://doi.org/10.1016/j.cplett.2005.05.039
  16. Shelly, J.; Watanabe, K.; Klein, M. L. Electrochim. Acta 1991, 36, 1729. https://doi.org/10.1016/0013-4686(91)85035-6
  17. Laaksonen, L.; Rosenholm, J. B. Chem. Phy. Lett. 1993, 216, 429. https://doi.org/10.1016/0009-2614(93)90122-H
  18. Tummino, P. J.; Gafni, A. Biophys. J. 1993, 64, 1580. https://doi.org/10.1016/S0006-3495(93)81528-5
  19. Martinez-Landeria, P.; Prieto, G.; Ruso, J. M.; Sarmiento, F. Colloids Surf. A 2002, 203, 67. https://doi.org/10.1016/S0927-7757(01)01068-8
  20. Motomura, K.; Yamanaka, M.; Aratono, M. Colloid Polym. Sci. 1984, 262, 948. https://doi.org/10.1007/BF01490027
  21. Huglin M. B. Light Scattering from Polymer Solutions; Academic Press: New York, 1972.
  22. Blanco, E.; Gonzalez-Perez, A.; Ruso, J. M.; Perido, R.; Prieto, G.; Sarmiento, F.; J. Colloid Interface Sci. 2005, 288, 247. https://doi.org/10.1016/j.jcis.2005.02.085
  23. Holland, P. M.; Rubingh, D. N. J. Phys. Chem. 1983, 87, 1984. https://doi.org/10.1021/j100234a030
  24. Holland, P. M.; Rubingh, D. N. Mixed Surfactant Systems(ACS Symposium Series 501); ACS: Washington, DC, 1992.
  25. Abe, M.; Scamehorn, J. F. Mixed Surfactant Systems; CRC Press: New York, 2004.
  26. Scamehorn, J. F. Phenomena in Mixed Surfactant Systems(ACS Symposium Series 311); ACS: Washington, DC, 1985.
  27. Yoshikawa, H. Adv. Drug Delivery Rev. 1997, 28, 239. https://doi.org/10.1016/S0169-409X(97)00075-6
  28. Morigaki, K.; Walde, P. Curr. Opin. Colloid Interface Sci. 2007, 12, 75. https://doi.org/10.1016/j.cocis.2007.05.005
  29. Junquera, E.; Aicart, E. Langmuir 2002, 18, 9250. https://doi.org/10.1021/la026121p
  30. Rodriguez-Pulido, A.; Casado, A.; Munoz-Ubeda, M.; Junquera, E.; Aicart, E. Langmuir 2010, 26, 9378. https://doi.org/10.1021/la100373r
  31. Lee, B. H. J. Kor. Chem. Soc. 2002, 46, 495. https://doi.org/10.5012/jkcs.2002.46.6.495
  32. Park, I. J.; Lee, B. H. J. Korea Chem. Soc. 2006, 50, 190. https://doi.org/10.5012/jkcs.2006.50.3.190

Cited by

  1. Aggregation behavior of sodium 3-(octyloxy)-4-nitrobenzoate in aqueous solution pp.1369-9261, 2018, https://doi.org/10.1039/C8NJ03440K