DOI QR코드

DOI QR Code

HORIZON RUN 4 SIMULATION: COUPLED EVOLUTION OF GALAXIES AND LARGE-SCALE STRUCTURES OF THE UNIVERSE

KIM, JUHAN;PARK, CHANGBOM;L'HUILLIER, BENJAMIN;HONG, SUNGWOOK E.

  • Received : 2015.07.30
  • Accepted : 2015.08.18
  • Published : 2015.06.25

Abstract

The Horizon Run 4 is a cosmological N-body simulation designed for the study of coupled evolution between galaxies and large-scale structures of the Universe, and for the test of galaxy formation models. Using 63003 gravitating particles in a cubic box of Lbox = 3150 h−1Mpc, we build a dense forest of halo merger trees to trace the halo merger history with a halo mass resolution scale down to Ms = 2.7 × 1011h−1M. We build a set of particle and halo data, which can serve as testbeds for comparison of cosmological models and gravitational theories with observations. We find that the FoF halo mass function shows a substantial deviation from the universal form with tangible redshift evolution of amplitude and shape. At higher redshifts, the amplitude of the mass function is lower, and the functional form is shifted toward larger values of ln(1/σ). We also find that the baryonic acoustic oscillation feature in the two-point correlation function of mock galaxies becomes broader with a peak position moving to smaller scales and the peak amplitude decreasing for increasing directional cosine μ compared to the linear predictions. From the halo merger trees built from halo data at 75 redshifts, we measure the half-mass epoch of halos and find that less massive halos tend to reach half of their current mass at higher redshifts. Simulation outputs including snapshot data, past lightcone space data, and halo merger data are available at http://sdss.kias.re.kr/astro/Horizon-Run4.

Keywords

cosmology: large-scale structure of universe;galaxies: evolution;methods: numerical

References

  1. Rossi, G., Sheth, R. K., & Tormen, G. 2011, Modelling the Shapes of the Largest Gravitationally Bound Objects, MNRAS, 416, 248
  2. Onions, et al. 2012, Subhaloes Going Notts: The Subhalo-Finder Comparison Project, MNRAS, 423, 1200 https://doi.org/10.1111/j.1365-2966.2012.20947.x
  3. Park, C., Choi, Y.-Y., Kim, J., Gott, J. R., Kim, S. S., & Kim, K.-S. 2012, The Challenge of the Largest Structures in the Universe to Cosmology, ApJL, 759, L7 https://doi.org/10.1088/2041-8205/759/1/L7
  4. Reddick, R. M., Wechsler, R. H., Tinker, J. L., & Behroozi, P. S. 2013, The Connection Between Galaxies and Dark Matter Structures in the Local Universe, ApJ, 771, 30 https://doi.org/10.1088/0004-637X/771/1/30
  5. Rigopoulos, G., & Valkenburg, W. 2015, On the Accuracy of N-Body Simulations at Very Large Scales, MNRAS, 446, 677 https://doi.org/10.1093/mnras/stu2070
  6. Rodríguez-Puebla, A., Avila-Reese, V., & Drory, N. 2013, The Galaxy-Halo/Subhalo Connection: Mass Relations and Implications for Some Satellite Occupational Distributions, ApJ, 767, 92 https://doi.org/10.1088/0004-637X/767/1/92
  7. Sheth, R. K., & Tormen, G. 1999, Large-Scale Bias and the Peak Background Split, MNRAS, 308, 119 https://doi.org/10.1046/j.1365-8711.1999.02692.x
  8. Speare, R., Gott, J. R., Kim, J., & Park, C. 2015, Horizon Run 3: Topology as a Standard Ruler, ApJ, 799, 176 https://doi.org/10.1088/0004-637X/799/2/176
  9. Tatekawa, T., & Mizuno, S. 2007, Transients from Initial Conditions Based on Lagrangian Perturbation Theory in N-Body Simulations, JCAP, 12, 014
  10. Tinker, J., Kravtsov, A. V., Klypin, A., Abazajian, K.,Warren, M., Yepes, G., Gottlöber, S., & Holz, D. E. 2008, Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality
  11. Kim, J., Park, C., Gott, J. R., & Dubinski, J. 2009, The Horizon Run N-body Simulation: Baryon Acoustic Oscillations and Topology of Large-Scale Structure of the Universe, ApJ, 701, 1547 https://doi.org/10.1088/0004-637X/701/2/1547
  12. Kravtsov, A., Vikhlinin, A., & Meshscheryakov, A. 2014, Stellar Mass–alo Mass Relation and Star Formation Efficiency in High-Mass Halos, arXiv:1401.7329v1
  13. Kim, J., Park, C., & Choi, Y.-Y. 2008, A Subhalo–Galaxy Correspondence Model of Galaxy Biasing, ApJ, 683, 123 https://doi.org/10.1086/589566
  14. Kim, J., Park, C., Rossi, G., Lee, S. M., & Gott, J. R. 2011, The New Horizon Run Cosmological N-Body Simulations, JKAS, 44. 217
  15. Klypin, A., Prada, F., Yepes, G., Heß, S., & Gottlöber, S. 2015, Halo Abundance Matching: Accuracy and Conditions for Numerical Convergence, MNRAS, 447, 3693 https://doi.org/10.1093/mnras/stu2685
  16. L’uillier, B., Park, C., & Kim, J. 2014, Effects of the Initial Conditions on Cosmological N-Body Simulations, New Astron., 30, 79 https://doi.org/10.1016/j.newast.2014.01.007
  17. Lee, J. et al. 2014, Sussing Merger Trees: The Impact of Halo Merger Trees on Galaxy Properties in a Semi-Analytic Model, MNRAS, 445, 4197 https://doi.org/10.1093/mnras/stu2039
  18. Lewis, A., Challinor, A., & Lasenby, A. 2000, Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann-Robertson-Walker Models, ApJ, 538, 473 https://doi.org/10.1086/309179
  19. Lukić, Z., Heitmann, K., Habib, S., Bashinsky, S., & Ricker, P. 2007, The Halo Mass Function: High-Redshift Evolution and Universality, ApJ, 671, 1160 https://doi.org/10.1086/523083
  20. Manera, M., Sheth, R. K., & Scoccimarro, R. 2010, Large-Scale Bias and the Inaccuracy of the Peak-Background Split, MNRAS, 402, 589 https://doi.org/10.1111/j.1365-2966.2009.15921.x
  21. Muldrew, S. I., Pearce, F. R., & Power, C. 2011, The Accuracy of Subhalo Detection, MNRAS, 410, 2617 https://doi.org/10.1111/j.1365-2966.2010.17636.x
  22. Guo, Q., & White, S. 2014, Numerical Resolution Limits on Subhalo Abundance Matching, MNRAS, 437, 3228 https://doi.org/10.1093/mnras/stt2116
  23. Hwang, J.-C., Noh, H., & Gong, J.-O. 2012, Second-Order Solutions of Cosmological Perturbation in the Matter-Dominated Era, ApJ, 752, 50 https://doi.org/10.1088/0004-637X/752/1/50
  24. Hamilton, A. J. S. 1993, Toward Better Ways to Measure the Galaxy Correlation Function, ApJ, 417, 19 https://doi.org/10.1086/173288
  25. Hoffmann, K., et al. 2014, Subhaloes Gone Notts: Subhaloes as Tracers of the Dark Matter Halo Shape, MNRAS, 442, 1197 https://doi.org/10.1093/mnras/stu933
  26. Hong, S. E., Park, C., & Kim, J. 2015, The Most Bound Halo Particle–alaxy Correspondence Model of Galaxy Distributions: Implementation of Merger Timescale, submitted to ApJ
  27. Jenkins, A., Frenk, C. S., White, S. D. M., Colberg, J. M., Cole, S., Evrard, A. E., Couchman, H. M. P., & Yoshida, N. 2001, The Mass Function of Dark Matter Haloes, MNRAS, 321, 372 https://doi.org/10.1046/j.1365-8711.2001.04029.x
  28. Jenkins, A. 2010, Second-Order Lagrangian Perturbation Theory Initial Conditions for Resimulations, MNRAS, 403, 1859 https://doi.org/10.1111/j.1365-2966.2010.16259.x
  29. Kauffmann, G., Nusser, A., & Steinmetz, M. 1997, Galaxy Formation and Large-Scale Bias, MNRAS, 286, 795 https://doi.org/10.1093/mnras/286.4.795
  30. Kauffmann, G., White, S. D. M., Heckman, T. M., Ménard, B., Brinchmann, J., Charlot, S., Tremonnti, G., & Brinkmann, J. 2004, The Environmental Dependence of the Relations between Stellar Mass, Structure, Star Formation and Nuclear Acitivity in Galaxies, MNRAS, 353, 713 https://doi.org/10.1111/j.1365-2966.2004.08117.x
  31. Kim, Y.-R., Choi, Y.-Y., Kim, S. S., Kim, K.-S., Lee, J.-E., Shin, J., & Kim, M. 2014, Systematic Effects on the Genus Topology of the Large-Scale Structure of the Universe, ApJS, 212, 22 https://doi.org/10.1088/0067-0049/212/2/22
  32. Kim, J., & Park, C. 2006, A New Halo-Finding Method for N-Body Simulations, ApJ, 639, 600 https://doi.org/10.1086/499761
  33. De Lucia, G., Kauffmann, G., & White, S. D. M. 2004, Substructures in Cold Dark Matter Haloes, MNRAS, 349, 1101 https://doi.org/10.1111/j.1365-2966.2004.07584.x
  34. Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F., & Zepf, S. E. 1994, A Recipe for Galaxy Formation, MNRAS, 271, 781 https://doi.org/10.1093/mnras/271.4.781
  35. Crocce, M., Pueblas, S., & Scoccimarro, R. 2006, Transients from Initial Conditions in Cosmological Simulations, MNRAS, 373, 369 https://doi.org/10.1111/j.1365-2966.2006.11040.x
  36. Crocce, M., Fosalba, P., Castander, F. J., & Gaztanaga, E. 2010, Simulating the Universe with MICE: The Abundance of Massive Clusters, MNRAS, 403, 1353 https://doi.org/10.1111/j.1365-2966.2009.16194.x
  37. Dekel, A., Zolotov, A., Tweed, D., et al. 2013, Toy Models for Galaxy Formation versus Simulations, MNRAS, 435, 999 https://doi.org/10.1093/mnras/stt1338
  38. Dubinski, J. 1996, A Parallel Tree Code, New Astron., 1, 133 https://doi.org/10.1016/S1384-1076(96)00009-7
  39. Dubinski, J., Kim, J., Park, C., & Humble, R. 2004, GOTPM: A Parallel Hybrid Particle-Mesh Treecode, New Astron., 9, 111 https://doi.org/10.1016/j.newast.2003.08.002
  40. Dunkley, J., Komatsu, E., Nolta, M. R., et al. 2009, Five-Year Wilkinson Microwave Anisotropy Probe Observations: Likelihoods and Parameters from the WMAP Data, ApJS, 180, 306 https://doi.org/10.1088/0067-0049/180/2/306
  41. Eisenstein, D. J., & Hu, W. 1998, Baryonic Features in the Matter Transfer Function, ApJ, 496, 605 https://doi.org/10.1086/305424
  42. Gao, L, De Lucia, G., White, S. D. M., & Jenkins, A. 2004, Galaxies and Subhaloes in CDM Galaxy Clusters, MNRAS, 352, L1 https://doi.org/10.1111/j.1365-2966.2004.08098.x
  43. Guo, Q., White, S. D. M., Boylan-Kolchin, M., De Lucia, G., Kauffmann, G., Lemson, G., Li, C., Springel, V., & Weinmann, S. 2011, From Dwarf Spheroidals to cD Galaxies: Simulating the Galaxy Population in a CDM Cosmology, MNRAS, 413, 101 https://doi.org/10.1111/j.1365-2966.2010.18114.x
  44. Berlind, A. A., & Weinberg, D. H. 2002, The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass, ApJ, 575, 587 https://doi.org/10.1086/341469
  45. Abramson, L. E., Kelson, D. D., Dressler, A., Poggianti, B., Gladders, M. D., Oemler, A. Jr., & Vulcani, B. 2014, The Mass-Independence of Specific Star Formation Rates in Galactic Disks, ApJL, 785, L36 https://doi.org/10.1088/2041-8205/785/2/L36
  46. Angulo, R. E., Springel, V., White, S. D. M., Jenkins, A., Baugh, C. M. & Frenk, C. S. 2012, Scaling Relations for Galaxy Clusters in the Millennium-XXL Simulation, MNRAS, 426, 2046 https://doi.org/10.1111/j.1365-2966.2012.21830.x
  47. Baugh, C. M. 2006, A Primer on Hierarchical Galaxy Formation: The Semi-Analytical Approach, Rep. Prog. Phys., 69, 310
  48. Bhattacharya, S., Heitmann, K.,White, M., Lukic, Z.,Wagner, C., & Habib, H. 2011, Mass Function Predictions beyond CDM, ApJ, 732, 122 https://doi.org/10.1088/0004-637X/732/2/122
  49. Blanton, M. R., & Berlind, A. A. 2007, What Aspects of Galaxy Environment Matter?, ApJ, 664, 791 https://doi.org/10.1086/512478
  50. Choi, Y.-Y., Han, D.-H., & Kim, S. S. 2010, Korea Institute for Advanced Study Value-Added Galaxy Catalog, JKAS, 43, 191
  51. Choi, Y.-Y., Kim, J., Rossi, G., Kim, S. S., & Lee, J.-E. 2013, Topology of Luminous Red Galaxies from the Sloan Digital Sky Survey, ApJS, 209, 19 https://doi.org/10.1088/0067-0049/209/2/19
  52. Choi, Y.-Y. et al. 2015, in preparation
  53. Watson, W. A., Iliev, I. T., D’Aloisio, A., Knebe, A., Shapiro, P. R., & Yepes, G. 2013, The Halo Mass Function through the Cosmic Ages, MNRAS, 433, 1230 https://doi.org/10.1093/mnras/stt791
  54. Trujillo-Gomez, S., Klypin, A., Primack, J., & Romanowsky, A. J. 2011, Galaxies in CDM with Halo Abundance Matching: Luminosity–Velocity Relation, Maryonic Mass–Velocity Relation, Velocity Function, and Clustering, ApJ, 742, 16 https://doi.org/10.1088/0004-637X/742/1/16
  55. Wang, Y. O., Lin, W. P., Kang, X., Dutton, A., Yu, Y., & Macció, A. V. 2014, Satellite Alignment. I. Distribution of Substructures and Their Dependence on Assembly History from N-Body Simulations, ApJ, 786, 8 https://doi.org/10.1088/0004-637X/786/1/8
  56. Warren, M. S., Abazajian, K., Holz, D. E., & Teodoro, L. 2006, Precision Determination of the Mass Function of Dark Matter Halos, ApJ, 646, 881 https://doi.org/10.1086/504962
  57. Weinberg, D. H., Colombi, S., Davé, R., & Katz, N. 2008, Baryon Dynamics, DarkMatter Substructure, and Galaxies, ApJ, 678, 6 https://doi.org/10.1086/524646
  58. Zhao, H. 2004, Dynamical Friction for Dark Halo Satellites: Effects of Tidal Mass Loss and Growing Host Potential, MNRAS, 351, 891 https://doi.org/10.1111/j.1365-2966.2004.07835.x
  59. Zheng, Z., et al. 2005, Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies, ApJ, 633, 791 https://doi.org/10.1086/466510
  60. Zheng, Z., Zehavi, I., Eisenstein, D. J., Weinberg, D. H., & Jing, Y. P. 2009, Halo Occupation Distribution Modeling of Clustering of Luminous Red Galaxies, ApJ, 707, 554 https://doi.org/10.1088/0004-637X/707/1/554

Cited by

  1. Approximate Methods for the Generation of Dark Matter Halo Catalogs in the Age of Precision Cosmology vol.4, pp.4, 2016, https://doi.org/10.3390/galaxies4040053
  2. Dark matter haloes in modified gravity and dark energy: interaction rate, small- and large-scale alignment vol.468, pp.3, 2017, https://doi.org/10.1093/mnras/stx700
  3. THE MOST BOUND HALO PARTICLE–GALAXY CORRESPONDENCE MODEL: COMPARISON BETWEEN MODELS WITH DIFFERENT MERGER TIMESCALES vol.823, pp.2, 2016, https://doi.org/10.3847/0004-637X/823/2/103
  4. COSMOLOGICAL CONSTRAINTS FROM THE REDSHIFT DEPENDENCE OF THE ALCOCK–PACZYNSKI EFFECT: APPLICATION TO THE SDSS-III BOSS DR12 GALAXIES vol.832, pp.2, 2016, https://doi.org/10.3847/0004-637X/832/2/103
  5. Cosmological Constraints from the Redshift Dependence of the Volume Effect Using the Galaxy 2-point Correlation Function across the Line of Sight vol.844, pp.2, 2017, https://doi.org/10.3847/1538-4357/aa7cfc
  6. HECTOMAP AND HORIZON RUN 4: DENSE STRUCTURES AND VOIDS IN THE REAL AND SIMULATED UNIVERSE vol.818, pp.2, 2016, https://doi.org/10.3847/0004-637X/818/2/173
  7. Beyond Kaiser bias: mildly non-linear two-point statistics of densities in distant spheres vol.466, pp.2, 2017, https://doi.org/10.1093/mnras/stw3221
  8. Topology of Large-scale Structures of Galaxies in Two Dimensions—Systematic Effects vol.836, pp.1, 2017, https://doi.org/10.3847/1538-4357/836/1/45
  9. SURFS: Riding the waves with Synthetic UniveRses For Surveys vol.475, pp.4, 2018, https://doi.org/10.1093/mnras/sty061
  10. Cosmological Parameter Estimation Using the Genus Amplitude—Application to Mock Galaxy Catalogs vol.853, pp.1, 2018, https://doi.org/10.3847/1538-4357/aaa24f
  11. Finding closure: approximating Vlasov-Poisson using finitely generated cumulants vol.2018, pp.10, 2018, https://doi.org/10.1088/1475-7516/2018/10/030
  12. Lyman-α forest constraints on interacting dark sectors vol.2018, pp.09, 2018, https://doi.org/10.1088/1475-7516/2018/09/011
  13. Minkowski Tensors in Two Dimensions: Probing the Morphology and Isotropy of the Matter and Galaxy Density Fields vol.858, pp.2, 2018, https://doi.org/10.3847/1538-4357/aabb53
  14. Resolution convergence in cosmological hydrodynamical simulations using adaptive mesh refinement vol.477, pp.1, 2018, https://doi.org/10.1093/mnras/sty673
  15. Infalling groups and galaxy transformations in the cluster A2142 vol.610, pp.1432-0746, 2018, https://doi.org/10.1051/0004-6361/201731600

Acknowledgement

Grant : 우주거대구조의 생성과 진화