원자력 시설 해체 폐기물 내 55Fe 와 63Ni 방사능 분석을 위한 전처리 방법 비교 연구

DOI QR코드

DOI QR Code

이훈;임종명;지영용;정근호;강문자;최근식;이진홍
Lee, Hoon;Lim, Jong-Myoung;Ji, Young-Yong;Jung, Kun-Ho;Kang, Mun-Ja;Choi, Geun-Sik;Lee, Jin-Hong

  • 투고 : 2015.02.27
  • 심사 : 2015.04.13
  • 발행 : 2015.08.31

초록

원자로의 해체 과정에서 발생되는 방사성 폐기물 내 존재하는 55Fe, 63Ni은 폐기물의 처리방법을 결정하는 데 있어 기초적인 지표로 활용되는 중요한 핵종이다. 하지만 두 핵종은 낮은 방사선량으로 인해 다른 핵종들과의 분리가 필수적이며 또한 시료 매질에서 완전히 추출할 수 있는 전처리가 선행되어야 한다. 따라서 본 연구는 다양한 매질의 원자로 해체 폐기물에 대한 전처리방법의 적용성을 평가하기 위해 NIST SRM 5종 (1646a, 1944, 8704, 2709a, 1633c)에 대하여 왕수, 불산, 과염소산을 각각 이용하는 습식산화법과 alkali-fusion 전처리법에 따른 Iron와 Nickel의 회수율을 비교하였다. 실험 결과 alkali-fusion 방법은 다양한 매질의 인증표준물질에 대해 Iron 95.3∼98.3%, Nickle 86.6∼88.1%의 분석 정확도와 2% 이하의 정밀도를 나타냄으로서 해체폐기물 중 55Fe, 63Ni, 분석에 가장 최적화된 전처리법으로 판단된다.

키워드

해체폐기물;전처리방법;습식산화;용융법

참고문헌

  1. M. Chen and L. Q. Ma, “Comparison of Three Aqua Regia Digestion Methods for Twenty Florida Soils” Soil Science Society of America Journal, 65, 499-510 (2001). https://doi.org/10.2136/sssaj2001.652499x
  2. I. L. Garcia, M. S. Merlos, and M. H. Cordoba, “Slurry Sampling for the Rapid Determination of Cobalt, Nickel and Copper in Solils and Sediments by Electrothermal Atomic Absorption Spectrometry” Mikrochimica Acta, 130, 295-300 (1999). https://doi.org/10.1007/BF01242919
  3. Y. S. Chung, E. S. Jeong, and S. Y. Cho, “Intercomparison and determination of environmental standard samples by instrumental neutron activation analysis” Journal of Radioanalytical and Nuclear Chemistry, 217, 71-76 (1997). https://doi.org/10.1007/BF02055351
  4. Q. S. Begum, Y. S. Chung, K. S. Choi, J. H. Moon, S. H. Kim, J. M. Lim, and Y. J. Kim, “Elemental Analysis using Instrumental Neutron Activation Analysis and Inductively Coupled Plasma Atomic Emission Spectrometry: A Comparative Study” KAERI Report, TR-2513/2013, 56 (2003).
  5. D. A. Figueroa, B. D. Jimenez, and C. J. Rodrıguez-Sierra, “Trace metals in sediments of two estuarine lagoons from Puerto Rico” Environmental Pollution, 141, 336-342 (2006). https://doi.org/10.1016/j.envpol.2005.08.037
  6. Z. Hseu, Z. Chen, C. Tsai, C. Tsui, S. Cheng, C. Liu , and H. Lin, “Digestion methods for total heavy metals in sediments and soils” Water, air, and Soil Pollution, 141, 189-205 (2002). https://doi.org/10.1023/A:1021302405128
  7. J. M. Morrison, L. Yunjiao, G. Vladimiros, Papangelakis, and I. Perederiy, “High pressure oxidative acid leaching of nickel smelter slag: Characterization of feed and residue” Hydrometallurgy, 97, 185-193 (2009). https://doi.org/10.1016/j.hydromet.2009.03.007
  8. J. M. Morrison, M.B. Goldhaber, L. Lopaka L, J. M. Holloway, R. B. Wanty, R. E. Wolf, and J. F. Ranville, “A regional-scale study of chromium and nickel in soils of northern California, USA” Applied Geochemistry, 24, 1500-1511 (2009). https://doi.org/10.1016/j.apgeochem.2009.04.027
  9. M. J. Marques, A. Salvador, A. E. Morales-Rubio, and M. de la Guardia, “Trace element determination in sediments: a comparative study between neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS)” Microchemical Journal, 65, 177-187 (2000). https://doi.org/10.1016/S0026-265X(00)00051-5
  10. J. Ni, R. C. Block, and X. G. Xu, "Photon activation analysis: a proof of principle using a NIST sediment standard and an electron accelerator at Rensselaer Polytechnic Institute" 53, 535-540 (2000). https://doi.org/10.1016/S0969-8043(00)00212-8
  11. S. Guerzoni, G. Rovatti, E. Molinaroli, and G. Rampazzo, “Total and “Selective” Extraction Methods for Trace Metals in Marine Sediment Reference Samples (Mess-1, NBS 1646)” Chemistry and Ecology, 3(1) (1987). https://doi.org/10.1080/02757548708070833
  12. R. L. Paul, E. A. Mackey, R. Zeisler, R. O. Spatz, and B. E. Tomlin, “Determination of elements in SRM soil 2709a by neutron activation analysis” Journal of Radioanalytical Nuclear Chemistry, 282. 945-950 (2009). https://doi.org/10.1007/s10967-009-0250-0
  13. W. Fulin, T. E. Davis, and V. V. Tarabara, “Crystallization of Calcium sulfate dihydrate in the presence of colloidal silica” industrial & Engineering Chemistry Research, 49(22), 11344-11350 (2010). https://doi.org/10.1021/ie100309b
  14. S. N. dos Santos and L. R. F. Alleoni, “Methods for extracting heavy metals in soils from the Southwestern Amazon, Brazil” Water Air Soil Pollut, 224-1430 (2013).
  15. C. H. Lee, M. H. Lee, S. H. Han, Y. K. Ha, and K. S. Song, “Systematic radiochemical separation for the determination of 99Tc, 90Sr, 94Nb, 55Fe and 59,63Ni in low and intermediate radioactive waste samples” Journal of Radioanalytical Nuclear Chemistry, 288, 319-325 (2011). https://doi.org/10.1007/s10967-011-0984-3
  16. X. Hou, L. F. Østergaard and Sven P. Nielsen, “Determination of 63Ni and 55Fe in nuclear waste samples using radiochemical separation and liquid scintillation counting” Analytica Chimica Acta, 535, 297-307 (2005). https://doi.org/10.1016/j.aca.2004.12.022
  17. G. R. Xu, j. L. Zou, and G. B. Li, “Stabilization of heavy metal in sludge ceramsite” Water Research, 44, 2930-2938 (2010). https://doi.org/10.1016/j.watres.2010.02.014
  18. A. A. Aydin and A. Aydin, “Development of an immobilization process for heavy metal containing galvanic solid waste by use of sodium tetraborate” Journal of Hazardous Materials, 270, 35-44 (2014). https://doi.org/10.1016/j.jhazmat.2013.12.017
  19. A. N. Ejhieh and M. K. Samani, “Effective removal of Ni(Ⅱ) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime” Journal of Hazardous Materials, 260, 339-349 (2013). https://doi.org/10.1016/j.jhazmat.2013.05.014
  20. J. L. Jones and L. C. Howick, “Precipitation from mixed solvents-Ⅵ nickel dimethylglyoxime” Talanta, 11, 757-760 (1964). https://doi.org/10.1016/0039-9140(64)80101-6
  21. M. H. T. Taddei, J. F. Macacini, R. Vicente, J. T. Marumo, S. K. Sakata, and L. A. A. Terremoto, “Determination of 63Ni and 59Ni in spent ion-exchange resin and activated charcoal from the IEA-R1 nuclear research reactor” Applied Radiation and Isotopes, 77, 50-55 (2013). https://doi.org/10.1016/j.apradiso.2013.02.014
  22. A. Gudelis, R. Druteikien, B. Luksien, R. Gvozdait, S. P. Nielsen, X. Hou, J. Mazeika, and R. Petrosius, “Assessing deposition levels of 55Fe, 60Co and 63Ni in the Ignalina NPP environment” Journal of Environmental Radioactivity, 101, 464-467 (2010). https://doi.org/10.1016/j.jenvrad.2008.08.002
  23. P. E. Warwick, A. B. Cundy, I. W. Croudace, M. E. D. Bains, and A. A. Dale, “The uptake of Iron-55 by marine sediment, macroalgae, and biota following discharge from a nuclear power station” ENVIRONMENTAL SCIENCE & TECHNOLOGY, 35, 2171- 2177 (2001). https://doi.org/10.1021/es001493a
  24. M. J. Kang, K. H. Chung, S. B. Hong, G. S. Choi, and C. W. Lee, “Radioactivity Analysis of 55Fe and 63Ni in Dismantled Concrete” J. Korean Radioact. Waste Soc., 5(1), 19-27 (2007).
  25. N. F. Y. Tam and M. W. Y. Yao, “Three digestion method to determine concentrations of Cu, Zn, Cd, Ni, Pb, Cr, Mn, and Fe in mangrove sediments from Sai Keng, Chek Keng, and Sha Tau Kok, Hong Kong” Environmental Contamination and Toxicology, 62, 708-716 (1999). https://doi.org/10.1007/s001289900931
  26. B. S. Krumgalz and G. Fainshtein, “Trace metal contents in certified reference sediments determined by nitric acid digestion and atomic absorption spectrometry” Analytica Chimica Acta, 218, 335-340 (1989). https://doi.org/10.1016/S0003-2670(00)80310-4
  27. R. C. Nugueirol, W. J. de Melo, E. I. Bertocini, and L. R. F. Alleoni, “Concentrations of Cu, Fe, Mn, and Zn in tropical soils amended with sewage sludge and composted sewage sludge” Environ Monit Assess, 185, 2929-2938 (2013). https://doi.org/10.1007/s10661-012-2761-3
  28. S. B. Hong, M. J. Kang, K. W. Lee, and U. S. Chung, “Development of scaling factors for the activated concrete of the KRR-2” Applied Radiation and Isotopes, 67, 1530-1533 (2009). https://doi.org/10.1016/j.apradiso.2009.02.056
  29. Y. j. Lee, K. W. Lee, B. Y. Min, D. S. Hwang, and J. K. Moon, “The characterization of cement waste form for final disposal of decommissioning concrete wastes” Annals of Nuclear Energy, 77, 294-299 (2015). https://doi.org/10.1016/j.anucene.2014.11.027
  30. B. I. Kim and C. L. Kim, “Review of the Acceptance Criteria of Very Low Level Radioactive Waste for the Disposal of Decommissioning Waste” JNFCWT, 12(2), 165-169 (2014).
  31. B. Y. Min, P. J. Woo, W. K. Choi, and K. W. Lee, “Separation of Radionuclide from Dismantled Concrete Waste” J. Korean Radioact. Waste Soc., 7(2), 79-86 (2009).
  32. H. R. Kim, “The radioactivity estimation of 14C and 3H in graphite waste samples of the KRR-2” Applied Radiation and Isotopoes, 79, 109-113 (2013). https://doi.org/10.1016/j.apradiso.2013.04.027
  33. X. Hou, “Radiochemical analysis of radionuclides difficult to measure for waste characterization in decommissioning of nuclear facilities” Journal of Radioanalytical Nuclear Chemistry, 273(1), 43-48 (2007). https://doi.org/10.1007/s10967-007-0708-x
  34. M. D. Bondarov, A. M. Maksimenko, V. A. Zheltonozhskii, M. V. Zheltonozhskaya, V. V. Petrov, and A. I. Savin, “Activity study of graphite from the Chernobyl NPP reactor” Bulletine of the Russian Academy of Sciences: physics, 73(7), 261-265 (2009). https://doi.org/10.3103/S1062873809020300
  35. B. Remenec, S. Dulanska, and L. Matel, “Determination of difficult to measure radionuclides in primary circuit facilities of NPP V1 Jaslovske Bohunice” Journal of Radioanalytical Nuclear Chemistry, 298, 1879-1884 (2013). https://doi.org/10.1007/s10967-013-2679-4