DOI QR코드

DOI QR Code

Optimization of Radiostrontium Separation Process Using Sr Resin

Sr resin을 이용한 방사성 스트론튬 분리의 최적화

Jung, Yoonhee;Kim, Hyuncheol;Suh, Kyung Suk;Kang, Mun Ja;Chung, Kun Ho
정윤희;김현철;서경석;강문자;정근호

  • Received : 2015.03.16
  • Accepted : 2015.04.23
  • Published : 2015.08.31

Abstract

For the analysis of 90Sr, which is a pure beta emitter, radiochemical separation from the main interfering elements such as Ca, Ba and Ra is required due to their similarity in chemical behavior to strontium. This study describes a radioanalytical procedure using extraction chromatography for separating Sr from interfering elements. The maximum capacity of the resin for Sr was approximately 6 mg per 1.5 mL of bed volume (BV). The recovery of Sr on the resin 1.5 mL (BV) was quantitative for the calcium level of 200 mg at the flow rate of 1 mL min-1. However the chemical yield declined by increasing the flow rate by up to 5 mL min-1 even at the calcium level of 200 mg. When using the same BV of Sr resin, the performance of the resin was enhanced as the cross-sectional area of the Sr resin column is small.

Keywords

Radiostrontium;Sr resin;Automated radionuclide separator;Optimization

References

  1. E.P. Horwitz, M.L. Dietz, R. Chaiarizia, H. Diamond, S.L. Maxwell, and M.R. Nelson, “Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions”, Anal. Chim. Acta., 301(1), 63-78 (1995). https://doi.org/10.1016/0003-2670(95)00144-O
  2. J. Mellado, M. Liaurado, and G. Rauret, “Determination of Pu, Am, U, Th and Sr in marine sediment by extraction chromatography”, Anal. Chim. Acta., 443(1), 81-90 (2001). https://doi.org/10.1016/S0003-2670(01)01191-6
  3. E.P. Horwitz, R. Chiarizia, and M.L. Dietz, “A Novel Strontium-Selective Extraction Chromatographic Resin”, Solvent Extr. Ion Exc., 10, 25-37 (1992).
  4. K.H. Chung, S.D. Choi, G.S. Choi, and M.J. Kang, “Design and performance of an automated radionuclide separator its application on the determination of 99Tc in groundwater”, Appl. Radiat. Isot., 81, 57-61 (2013). https://doi.org/10.1016/j.apradiso.2013.03.080
  5. H. Kim, K.H. Chung, Y. Jung, M. Jang, M.J. Kang, and G.S. Choi, “A rapid and efficient automated method for the sequential separation of plutonium and radiostrontium in seawater”, J. Randioanal. Nucl. Chem., 304, 321-327 (2015). https://doi.org/10.1007/s10967-014-3595-y
  6. Sr resin Eichrom Technologies, "Sr Resin Technical Data." Eichrom. Accessed Mar. 2 2015. Available from: http://www.eichrom.com/eichrom/products/info/sr_resin.aspx.
  7. S.L. Maxwell, B.K. Culligan, and R.C. Utsey, “Rapid determination of radiostrontium in seawater samples”, J. Radioanal. Nucl. Chem., 298, 867-875 (2013). https://doi.org/10.1007/s10967-013-2430-1
  8. M.M. Bé, V. Chisté, C. Dulieu, E. Browne, C. Baglin, V. Chechev, N. Kuzmenco, R. Helmer, F. Kondev, D. MacMahon, and K.B. Lee, Monographie BIPM-5: Table of Radionuclides, Bureau International des Poids et mesures., 3-A, 3 - 244 (2004).
  9. J.P. Chen, “Batch and continuous adsorption of strontium by plant root tissues”, Bioresource Technol., 60(5), 185-189 (1997). https://doi.org/10.1016/S0960-8524(97)00021-7
  10. M.M. Bé, V. Chisté, C. Dulieu, E. Browne, C. Baglin, V. Chechev, N. Kuzmenco, R. Helmer, F. Kondev, D. MacMahon, and K.B. Lee, Monographie BIPM-5: Table of Radionuclides, Bureau International des Poids et mesures., 7-A, 14 - 245 (2004).
  11. R. Bojanowski and D. Knapinska-Skiba, “Determination of low level Sr-90 in environmental samples: a novel approach to the classical method”, J. Radioanal. Nucl. Chem., 138(2), 207 (1990). https://doi.org/10.1007/BF02039846
  12. V. Mikulaj and V. Svec, “Radiochemical analysis of Sr-90 in milk, soil and plants by solvent extraction”, J. Radionanal. Nucl. Chem., 175(4), 313 (1993).
  13. G.H. Kramer and J.M. Davis, “Isolation of strontium-90, yttrium-90, promethium-147 and cerium-144 from wet ashed urine by calcium oxalate co-precipita- tion and sequential solvent extraction”, Anal, Chem., 54, 1428-1431 (1982). https://doi.org/10.1021/ac00245a037
  14. E.P. Horwitz, M.L. Dietz, and D.E. Fisher, “Co-relation of the extraction of strontium nitrate by a crown ether with the water content of the organic phase”, Solvent Extr. Ion Exc., 8, 199-208 (1990). https://doi.org/10.1080/07366299008917994
  15. G. Zirnhelt, M.J. Leroy, J.P. Brunette, Y. Frere, and Ph. Gramain, “Strontium extraction with a polymerbound 18-crown-6 polyether”, Sep. Sci. Technol., 16, 403 (1981). https://doi.org/10.1080/01496398108068529
  16. M.M. Bé, V. Chisté, C. Dulieu, E. Browne, C. Baglin, V. Chechev, N. Kuzmenco, R. Helmer, F. Kondev, D. MacMahon, and K.B. Lee, Monographie BIPM-5: Table of Radionuclides, Bureau International des Poids et mesures., 1-A, 1 - 150 (2004).
  17. A.K. De, Environmental Chemistry, 5rd ed., 212, New Age International Publishers, New Delhi (1982).
  18. J. Lehto and X. Hou, Chemistry and Analysis of Radionuclides, 1 st ed., 106-114, Wiley-Vch, Weinheim, Germany (2012).
  19. N. Casacuberta, P. Masque, J. Garcia-Orellana, R. Garcia-Tenorio, and K.O. Buesseler, “90Sr and 89Sr in seawater off Japan as a consequence of the Fukushima Dai-ichi nuclear accident”, Biogeosciences, 10, 3649-3659 (2013). https://doi.org/10.5194/bg-10-3649-2013

Cited by

  1. Feasibility study of an analytical method for detecting 90Sr in soil using DGA resin and Sr resin vol.313, pp.2, 2017, https://doi.org/10.1007/s10967-017-5328-5