DOI QR코드

DOI QR Code

BOUNDEDNESS IN NONLINEAR FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

GOO, YOON HOE

  • Received : 2014.12.31
  • Accepted : 2015.07.16
  • Published : 2015.08.31

Abstract

In this paper, we investigate bounds for solutions of nonlinear functional differential systems using the notion of t-similarity.

Keywords

h-stability;t-similarity;perturbed functional differential system

References

  1. G.A. Hewer: Stability properties of the equation by t-similarity. J. Math. Anal. Appl. 41 (1973), 336-344. https://doi.org/10.1016/0022-247X(73)90209-6
  2. V. Lakshmikantham & S. Leela: Differential and Integral Inequalities: Theory and Applications Vol.. Academic Press, New York and London, 1969.
  3. B.G. Pachpatte: On some retarded inequalities and applications. J. Ineq. Pure Appl. Math. 3 (2002), 1-7.
  4. M. Pinto: Perturbations of asymptotically stable differential systems. Analysis 4 (1984), 161-175.
  5. ______: Stability of nonlinear differential systems. Applicable Analysis 43 (1992), 1-20. https://doi.org/10.1080/00036819208840049
  6. ______: Boundedness in the perturbed differential systemsJ. Korean Soc. Math. Edu. Ser.B: Pure Appl. Math. 20 (2013), 223-232.
  7. Y.H. Goo, D.G. Park & D.H. Ryu: Boundedness in perturbed differential systems. J. Appl. Math. and Informatics 30 (2012), 279-287.
  8. V. M. Aleksee: An estimate for the perturbations of the solutions of ordinary differential equations.Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 28-36 (Russian).
  9. F. Brauer: Perturbations of nonlinear systems of differential equations. J. Math. Anal. Appl. 14 (1966), 198-206. https://doi.org/10.1016/0022-247X(66)90021-7
  10. S.K. Choi & H.S. Ryu: h−stability in differential systems. Bull. Inst. Math. Acad. Sinica 21 (1993), 245-262.
  11. S.K. Choi, N.J. Koo & H.S. Ryu: h-stability of differential systems via t-similarity. Bull. Korean. Math. Soc. 34 (1997), 371-383.
  12. R. Conti: Sulla t-similitudine tra matricie l’equivalenza asintotica dei sistemi differenziali lineari. Rivista di Mat. Univ. Parma 8 (1957), 43-47.
  13. Y.H. Goo: Boundedness in the functional nonlinear perturbed differential systems. J. Korean Soc. Math. Edu. Ser.B: Pure Appl. Math. 22 (2015), 101-112.
  14. ______: h-stability of perturbed differential systems via t-similarity. J. Appl. Math. and Informatics 30 (2012), 511-516.