Power Quality Improvement in Autonomous Microgrids Using Multi-functional Voltage Source Inverters: A Comprehensive Review

DOI QR코드

DOI QR Code

Miveh, Mohammad Reza;Rahmat, Mohd Fadli;Ghadimi, Ali Asghar;Mustafa, Mohd Wazir

  • 투고 : 2014.10.25
  • 심사 : 2015.03.06
  • 발행 : 2015.07.31

초록

Multi-functional voltage source inverters (VSIs) have attracted increasing attention in recent years for their advantageous auxiliary services for power quality enhancement in autonomous microgrids. These types of VSIs can not only achieve a proper control scheme in autonomous mode but also cope with the prescribed power quality and stability requirements. These functionalities are integrated within the same device, thereby significantly improving the cost-effectiveness of microgrids while decreasing the investment and bulk compared with those of multiple devices with independent functionalities. Control strategies for power quality enhancement in autonomous microgrids using multi-functional VSIs are comprehensively reviewed in this paper. In addition, such VSIs are discussed in detail, and comparisons of which are also provided. Lastly, a number of future research directions for multi-functional VSIs are recommended.

키워드

Autonomous microgrids;Microgrid control;Multi-functional voltage source inverter;Power quality

참고문헌

  1. M. B. Delghavi and A. Yazdani, “An adaptive feedforward compensation for stability enhancement in droop-controlled inverter-based microgrids,” IEEE Trans. Power Del., Vol. 26, No. 3, pp. 1764-1773, Jul. 2011. https://doi.org/10.1109/TPWRD.2011.2119497
  2. R. Kamel, A. Chaouachi, and K. Nagasaka, “Detailed analysis of micro-grid stability during islanding mode under different load conditions,” Engineering, Vol. 3, No. 5, pp. 508-516, May 2011. https://doi.org/10.4236/eng.2011.35059
  3. H. Karimi, H. Nikkhajoei, and R. Iravani, “Control of an electronically coupled distributed resource unit subsequent to an islanding event,” IEEE Trans. Power Del., Vol. 23, No. 1, pp. 493-501, Jan. 2008. https://doi.org/10.1109/TPWRD.2007.911189
  4. D. P. Ariyasinghe and D. M. Vilathgamuwa, "Stability analysis of microgrids with constant power loads," in Proc. IEEE Int. Conf. Sustainable Energy Technol., pp. 279-284, Nov. 2008.
  5. D. M. Vilathgamuwa, X. N. Zhang, S. D. G. Jayasinghe, B. S. Bhangu, C. J. Gajanayake, and K. J. Tseng, "Virtual resistance based active damping solution for constant power instability in AC microgrids," in Proc. 37th Annual Conf. IEEE Ind. Electron. Soc., pp. 3646-3651, Nov. 2011.
  6. M. N. Marwali, J.-W. Jung, and A. Keyhani, “Control of distributed generation systems – Part II: Load sharing control,” IEEE Trans. Power Electron., Vol. 19, No. 6, pp. 1551-1561, Nov. 2004. https://doi.org/10.1109/TPEL.2004.836634
  7. H. Karimi, E. J. Davison, and R. Iravani, “Multivariable servomechanism controller for autonomous operation of a distributed generation unit: Design and performance evaluation,” IEEE Trans. Power Syst., Vol. 25, No. 2, pp. 853-865, May 2010. https://doi.org/10.1109/TPWRS.2009.2031441
  8. B. Bahrani, M. Saeedifard, A. Karimi, and A. Rufer, “A multivariable design methodology for voltage control of a single-DG-unit microgrid,” IEEE Trans. Ind. Informat., Vol. 9, No. 2, pp. 589-599, May 2013. https://doi.org/10.1109/TII.2012.2221129
  9. Y. Mohamed and E. F. El-Saadany, “Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids,” IEEE Trans. Power Electron., Vol. 23, No. 6, pp. 2806-2816, Nov. 2008. https://doi.org/10.1109/TPEL.2008.2005100
  10. I. Vechiu, H. Camblong, G. Tapia, B. Dakyo, and O. Curea, “Control of four leg inverter for hybrid power system applications with unbalanced load,” Energy Conversion and Management, Vol. 48, No. 7, pp. 2119-2128, Jul. 2007. https://doi.org/10.1016/j.enconman.2006.12.019
  11. A. Mohd, E. Ortjohann, N. Hamsic, W. Sinsukthavorn, M. Lingemann, A. Schmelter, and D. Morton, “Control strategy and space vector modulation for three-leg four-wire voltage source inverters under unbalanced load conditions,” IET Power Electron., Vol. 3, No. 3, pp. 323-333, May 2010. https://doi.org/10.1049/iet-pel.2008.0281
  12. I. Vechiu, O. Curea, and H. Camblong, “Transient operation of a four-leg inverter for autonomous applications with unbalanced load,” IEEE Trans. Power Electron., Vol. 25, No. 2, pp.399-407, Feb. 2010. https://doi.org/10.1109/TPEL.2009.2025275
  13. E. Ortjohann, “A novel space vector modulation control strategy for three-leg four-wire voltage source inverters,” Power Electronics and Applications, pp. 1-10, Sep. 2007.
  14. W. Sinsukthavorn, E. Ortjohann, A. Mohd, N. Hamsic, D. Moton, “Control strategy for three-/four-wire-inverter- based distributed generation,” IEEE Trans. Ind. Electron., Vol. 59, No. 10, pp. 3890-3899, Oct. 2012. https://doi.org/10.1109/TIE.2012.2188871
  15. A. Teke and M. B. Latran, “Review of multifunctional inverter topologies and control schemes used in distributed generation systems,” Journal of Power Electronics, Vol. 14, No. 2, pp. 324-340, Mar. 2014. https://doi.org/10.6113/JPE.2014.14.2.324
  16. A. M. Salamah, S. J. Finney, and B. W. Williams, “Autonomous controller for improved dynamic performance of AC grid, parallel-connected, single-phase inverters,” IET Gen., Transm., Distrib., Vol. 2, No. 2, pp. 209-218, Mar. 2008. https://doi.org/10.1049/iet-gtd:20070144
  17. R. A. Gannett, J. C. Sozio, and D. Boroyevich, "Application of synchronous and stationary frame controllers for unbalanced and non-linear load compensation in 4-leg inverters," Applied Power Electronics Conference and Exposition, Vol. 2, pp. 1038-1043, 2002.
  18. M. Savaghebi, A. Jalilian, J. C. Vasquez, and J. M. Guerrero, “Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid,” IEEE Trans. Smart Grid, Vol. 3, No. 2, pp. 797-807, Jun. 2012. https://doi.org/10.1109/TSG.2011.2181432
  19. M. Hamzeh, H. Karimi, and H. Mokhtari, “A new control strategy for a multi-bus MV microgrid under unbalanced conditions,” IEEE Trans. Power Syst., Vol. 27, No. 4, pp. 2225-2232, Nov. 2012. https://doi.org/10.1109/TPWRS.2012.2193906
  20. M. Savaghebi, A. Jalilian, J. C. Vasquez, and J. M. Guerrero, “Autonomous voltage unbalance compensation in an islanded droop-controlled microgrid,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp.1390-1402, Apr. 2013. https://doi.org/10.1109/TIE.2012.2185914
  21. J. C. Vasquez, J. M. Guerrero, M. Savaghebi, J. Eloy-Garcia, and R. Teodorescu, “Modeling, analysis, and design of stationary-reference-frame droop-controlled parallel three-phase voltage source inverters,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp.1271-1280, Apr. 2013. https://doi.org/10.1109/TIE.2012.2194951
  22. M. Hamzeh, H. Karimi, and H. Mokhtari, “Harmonic and negative-sequence current control in an islanded multi-bus MV microgrid,” IEEE Trans. Smart Grid, Vol. 5, No. 1, pp. 167-176, Jan. 2014. https://doi.org/10.1109/TSG.2013.2263842
  23. H. Song and K. Nam, “Dual current control scheme for PWM converter under unbalanced input voltage conditions,” IEEE Trans. Ind. Electron.., Vol. 46, No. 5, pp. 953-959. Oct. 1999. https://doi.org/10.1109/41.793344
  24. Y. Suh, V. Tijeras, and T. A. Lipo, "A control method in dq synchronous frame for PWM boost rectifier under generalized unbalanced operating conditions," in Proceeding of IEEE 33rd Annual Power Electronics Specialists Conference (PESC'02), Vol. 3, pp. 1425-1430, 2002.
  25. O. Palizban and K. Kauhaniemi, “Hierarchical control structure in microgrids with distributed generation: Island and grid-connected mode,” Renewable and Sustainable Energy Reviews, Vol. 44. pp. 797-813, Apr. 2015. https://doi.org/10.1016/j.rser.2015.01.008
  26. K. Zhang, Y. Kang, J. Xiong, and J. Chen, “Direct repetitive control of SPWM inverter for UPS purpose,” IEEE Trans. Power Electron., Vol. 18, No. 3, pp. 784-792, May 2003. https://doi.org/10.1109/TPEL.2003.810846
  27. K. Zhou, K. Low, D. Wang, F. Luo, B. Zhang, and Y. Wang, “Zero-phase odd-harmonic repetitive controller for a single-phase PWM inverter,” IEEE Trans. Power Electron., Vol. 21, No. 1, pp. 193-201, Jan. 2006. https://doi.org/10.1109/TPEL.2005.861190
  28. R. Cárdenas, R. Pe˜na, J. Clare, P. Wheeler, and P. Zanchetta, “A repetitive control system for four-leg matrix converters feeding non-linear loads,” Electric Power Systems Research, Vol. 104, pp. 18- 27, Nov. 2013. https://doi.org/10.1016/j.epsr.2013.05.012
  29. M. B. Delghavi and A. Yazdani, “Islanded-mode control of electronically coupled distributed-resource units under unbalanced and nonlinear load conditions,” IEEE Trans. Power Del., Vol. 26, No. 2, pp. 661-673, Apr. 2011 https://doi.org/10.1109/TPWRD.2010.2042081
  30. X. Zhang, J. Wang, and C. Li,” Three-phase four-leg inverter based on voltage hysteresis control,” IEEE International Conference on Electrical and Control Engineering, pp. 4482-4485, Jun. 2010.
  31. M. Hosseinpour, M. Mohammadian, and A. Y. Varjani, ”Design and analysis of the droop-controlled parallel four-leg inverters to share unbalanced and nonlinear loads,” Przegląd Elektrotechniczny, pp. 105-110, Jan. 2014.
  32. E. Rokrok and M. E. Hamedani, “Comprehensive control scheme for an inverter-based distributed generation unit,” Iranian Journal of Science & Technology, Transaction B: Engineering, Vol. 33, No. B6, pp. 477-490, 2009.
  33. Uceda, F. Aldana, and P. Martinez, "Active filters for static power converter," in Proc. Inst. Elect. Eng., Vol. 130, No. 5, pp. 347-354, 1983.
  34. H. Akagi, “New trends in active filters for power conditioning,” IEEE. Trans. Ind. Appl., Vol. 32, No 6, pp. 1312-1322, Nov. /Dec. 1996. https://doi.org/10.1109/28.556633
  35. F. Barrero, S. Martínez, F. Yeves, F. Mur, and P. Martínez, “Universal and reconfigurable to UPS active power filter for line conditioning,” IEEE Trans. Power Del., Vol. 18, No. 1, pp. 283-290, Jan. 2003. https://doi.org/10.1109/TPWRD.2002.804014
  36. D. Graovac, V. A. Katic´, and A. Rufer, “Power quality problems compensation with universal power quality conditioning system,” IEEE Trans. Power Del., Vol. 22, No. 2, pp. 968-976, Apr. 2007. https://doi.org/10.1109/TPWRD.2006.883027
  37. B. Singh, K. Al-Haddad, and A. Chandra, “A review of active filters for power quality improvement,” IEEE Trans. Ind. Electron., Vol. 46, No. 5, pp. 960-971, Oct. 1999. https://doi.org/10.1109/41.793345
  38. N. A. Rahim, S. Mekhilef, and Z. Islam, "A new approach for harmonic compensation using single-Phase hybrid active power filter." in TENCON 2005 IEEE Region 10. Nov. 2005.
  39. Y. Li, D. M. Vilathgamuwa, and P. C. Loh, “A grid-interfacing power quality compensator for three-phase three-wire microgrid applications,” IEEE Trans. Power Electron., Vol. 21, No. 4, pp. 1021- 1031, Jul. 2006. https://doi.org/10.1109/TPEL.2006.876844
  40. S. George and V. Agarwal, “A DSP based optimal algorithm for shunt active filter under nonsinusoidal supply and unbalanced load conditions,” IEEE Trans. Power Electron., Vol. 22, No. 2, pp. 593- 601, Mar. 2007. https://doi.org/10.1109/TPEL.2006.890001
  41. A. Luo, S. Peng, C. Wu, J. Wu, and Z. Shuai, “Power electronic hybrid system for load balancing compensation and frequency selective harmonic suppression,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 723-732, Feb. 2012. https://doi.org/10.1109/TIE.2011.2161066
  42. H. Laaksonen and K. Kauhaniemi, “Stability of microgrid with different configurations after islanding due to fault in the utility grid,” Int. Rev. Electr. Eng. (IREE), Vol. 3, No. 3, pp. 498-512, Jun. 2008.
  43. Q. Liu, Y. Tao, X. Liu, Y. Deng, and X. He, “Voltage unbalance and harmonics compensation for islanded microgrid inverters,” IET Power Electronics, Vol. 7, No. 5, pp. 1055-1063, May 2014. https://doi.org/10.1049/iet-pel.2013.0410
  44. J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodriguez, “Control of power converters in AC microgrids.” IEEE Trans. Power Electron., Vol. 27, No. 11, pp. 4734-4749, Nov. 2012. https://doi.org/10.1109/TPEL.2012.2199334
  45. A. M. Bouzid, J. M. Guerrero, A. Cheriti, M. Bouhamida, P. Sicard, and M. Benghanem, “A survey on control of electric power distributed generation systems for microgrid applications,” Renewable and Sustainable Energy Reviews, Vol. 44, pp. 751-766, Apr. 2015. https://doi.org/10.1016/j.rser.2015.01.016
  46. S. J. Chiang and J. M. Chang, "Design and implementation of the parallelable active power filter," in Power Electronics Specialists Conference, PESC 99. 30th Annual IEEE, Vol. 1, pp. 406-411, 1999.
  47. A. G. Cerrada , O. P. Ardila, V. F. Batlle, P. R. Sánchez, and P. G. González, “Application of a repetitive controller for a three-phase active power filter,” IEEE Trans. Power Electron., Vol. 22, No. 1, pp. 237-246, Jan. 2007. https://doi.org/10.1109/TPEL.2006.886609
  48. A. Chandra, B. Singh, B. N. Singh, and K. Al-Haddad, “An improved control algorithm of shunt active filter for voltage regulation, harmonic elimination, power factor correction, and balancing of nonlinear loads,” IEEE Trans. Power Electron., Vol. 15, No. 3, pp. 495-507, May 2000. https://doi.org/10.1109/63.844510
  49. B. Singh, and J. Solanki, “An implementation of an adaptive control algorithm for a three-phase shunt active filter,” IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 2811-2820, Aug. 2009. https://doi.org/10.1109/TIE.2009.2014367
  50. S. K. Khadem, M. Basu, and M. F. Conlon "A review of parallel operation of active power filters in the distributed generation system," in Power Electronics and Applications Proceedings, pp. 1-10, 2011.
  51. J. H. R. Enslin and P. J. M. Heskes, “Harmonic interaction between a large number of distributed power inverters and the distribution network,” IEEE Trans. Power Electron., Vol 19, No. 6, pp. 1586-1593, Nov. 2004. https://doi.org/10.1109/TPEL.2004.836615
  52. J. H. R. Enslin and P. J. M. Heskes, "Harmonic interaction between a large number of distributed power inverters and the distribution network," in Power Electronics Specialist Conference, Vol. 4, pp. 1742-1747, 2003.
  53. M. Savaghebi, J. C. Vasquez, A. Jalilian, and J. M. Guerrero, “Secondary control for compensation of voltage harmonics and unbalance in microgrids,” Power Electronics for Distributed Generation Systems (PEDG), 3rd IEEE International Symposium, pp.46-53, 2012.
  54. M. Savaghebi, A. Jalilian, J. C. Vasquez, and J. M. Guerrero, “Secondary control for voltage quality enhancement in microgrids,” IEEE Trans. Smart Grid, Vol. 3, No. 4, pp. 1893-1902, Dec. 2012. https://doi.org/10.1109/TSG.2012.2205281
  55. M. Hamzeh, H. Karimi, H. Mokhtari, and J. Mahseredjian, "Control of a microgrid with unbalanced loads using virtual negative-sequence impedance loop," in Power Electronics, Drive Systems and Technologies Conference (PEDSTC), pp. 78-83, 2014.
  56. IEEE Recommended Practice for Electric Power Distribution for Industrial Plants, ANSI/IEEE Std. 141-1993, 1994.
  57. IEEE Recommended Practice for Monitoring Electric Power Quality, IEEE Std. 1159-2009, 2009.
  58. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power System, IEEE Std. 519-1992, 2014.
  59. J. M. Guerrero, M. Chandorkar, T. Lee, and P. C. Loh, “Advanced control architectures for intelligent microgrids – Part I: Decentralized and hierarchical control,” IEEE Trans. Ind. Electron., Vol. 60, No.4, pp.1254-1262, Apr. 2013. https://doi.org/10.1109/TIE.2012.2194969
  60. J. M. Guerrero, J.C. Vasquez, J. Matas, L. G. Vicuña, and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids – A general approach toward standardization,” IEEE Trans. Ind. Electron., Vol. 58, No. 1, pp. 158-172, Jan. 2011. https://doi.org/10.1109/TIE.2010.2066534
  61. O. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network management – Part I: Hierarchical control, energy storage, virtual power plants, and market participation,” Renewable and Sustainable Energy Reviews, Vol. 36, pp. 428-439, Aug. 2014. https://doi.org/10.1016/j.rser.2014.01.016
  62. A. Mehrizi-Sani and R. Iravani, “Potential-function based control of a microgrid in islanded and grid-connected models,” IEEE Trans. Power Syst., Vol. 25, No. 4, pp. 1883-1891, Nov. 2010.
  63. Y. A.-R. I. Mohamed and A. A. Radwan, “Hierarchical control system for robust microgrid operation and seamless mode transfer in active distribution systems,” IEEE Trans. Smart Grid, Vol. 2, No. 2, pp. 352-362, Jun. 2011. https://doi.org/10.1109/TSG.2011.2136362
  64. D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Canizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jimenez-Estevez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Trans, Smart Grid, Vol .5, No. 4, pp. 1905-1919, Jul. 2014. https://doi.org/10.1109/TSG.2013.2295514
  65. A. Bidram and A. Davoudi, “Hierarchical structure of microgrids control system,” IEEE Trans. Smart Grid, Vol. 3, No. 4, pp. 1963-1976, Dec. 2012. https://doi.org/10.1109/TSG.2012.2197425
  66. F. Katiraei, M. R. Iravani, and P. W. Lehn, “Micro-grid autonomous operation during and subsequent to islanding process,” IEEE Trans. Power Delivery, Vol. 20, No. 1, pp. 248-257, Jan. 2005. https://doi.org/10.1109/TPWRD.2004.835051
  67. C. Wang and M. Nehrir, “Power management of a stand-alone wind/ photovoltaic/fuel cell energy system,” IEEE Trans. Energy Convers., Vol. 23, No. 3, pp. 957-967, Sep. 2008. https://doi.org/10.1109/TEC.2007.914200
  68. Z. Zheng, H. Yang, R. Zhao, and C. Cheng, “Topologies and control strategies of multi-functional grid-connected inverters for power quality enhancement: A comprehensive review,” Renewable and Sustainable Energy Reviews, Vol. 24, pp. 223-270, Aug. 2013. https://doi.org/10.1016/j.rser.2013.03.033
  69. Z. Zhixiang, Z. Wang, and M. Cheng, “Modeling, analysis, and design of multifunction grid-interfaced inverters with output LCL filter,” IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3830-3839, Jul. 2014. https://doi.org/10.1109/TPEL.2013.2280724
  70. J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, M. A. M. Prats, J. I. Leon, and N. Moreno-Alfonso, “Power-electronic systems for the grid integration of renewable energy sources: a survey,” IEEE Trans. Ind. Electron., Vol. 53, No. 4, pp. 1002-1016, Jun. 2006. https://doi.org/10.1109/TIE.2006.878356
  71. O. A. Ahmed and J. A. M. Bleijs, “Power flow control methods for an ultracapacitor bidirectional converter in DC microgrids – a comparative study,” Renewable and Sustainable Energy Review, Vol. 26, pp. 727-738, Oct. 2013. https://doi.org/10.1016/j.rser.2013.06.021
  72. M. D. Ilić and S. X. Liu, Hierarchical Power Systems Control: Its Value in a Changing Industry (Advances in Industrial Control, Springer, chap. 2, 1996.
  73. M. Ilic-Spong, J. Christensen, and K. L. Eichorn, “Secondary voltage control using pilot point information,” IEEE Trans. Power Syst., Vol. 3, No. 2, pp. 660-668, May 1988. https://doi.org/10.1109/59.192920
  74. N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,” IEEE Power Energy Mag., Vol. 5, No. 4, pp. 78-94, Jul./Aug. 2007. https://doi.org/10.1109/MPAE.2007.376583
  75. B. Lasseter, “Microgrids [distributed power generation],” power Engineering Society Winter Meeting, Vol. 1, pp. 146-149, 2001.
  76. M. R. Miveh, M. F. Rahmat, and M. W. Mustafa, “A new per-phase control scheme for three-phase four-leg grid-connected inverters,” Electronics World, Vol. 120, No. 1939, pp. 30-36, Jul. 2014.
  77. R. Palma-Behnke, C. Benavides, F. Lanas, B. Severino, L. Reyes, J. Llanos, and D. Sáez, “A microgrid energy management system based on the rolling horizon strategy,” IEEE Trans. Smart Grid, Vol. 4, No. 2, pp. 996-1006, Jun. 2013. https://doi.org/10.1109/TSG.2012.2231440
  78. M. Savaghebi, M. Hashempour, and J. M. Guerrero, “Hierarchical coordinated control of distributed generators and active power filters to enhance power quality of microgrids,” Power and Electrical Engineering of Riga Technical University (RTUCON), 55th International Scientific Conference, pp. 259-264, 2014.

피인용 문헌

  1. 1. An Improved Control Strategy for a Four-Leg Grid-Forming Power Converter under Unbalanced Load Conditions vol.2016, 2016, doi:10.6113/JPE.2015.15.4.1054
  2. 2. A Novel Three-Phase Four-Wire Grid-Connected Synchronverter that Mimics Synchronous Generators vol.16, pp.6, 2016, doi:10.6113/JPE.2015.15.4.1054