Effects of Input Harmonics, DC Offset and Step Changes of the Fundamental Component on Single-Phase EPLL and Elimination

  • Luo, Linsong ;
  • Tian, Huixin ;
  • Wu, Fengjiang
  • Received : 2014.12.04
  • Accepted : 2015.04.05
  • Published : 2015.07.31


In this paper, the expressions of the estimated information of a single-phase enhanced phase-locked loop (EPLL), when input signal contains harmonics and a DC offset while the fundamental component takes step changes, are derived. The theoretical analysis results indicate that in the estimated information, the nth-order harmonics cause n+1th-order periodic ripples, and the DC offset causes a periodic ripple at the fundamental frequency. Step changes of the amplitude, phase angle and frequency of the fundamental component cause a transient periodic ripple at twice the frequency. These periodic ripples deteriorate the performance of the EPLL. A hybrid filter based EPLL (HF-EPLL) is proposed to eliminate these periodic ripples. A delay signal cancellation filter is set at the input of the EPLL to cancel the DC offset and even-order harmonics. A sliding Goertzel transform-based filter is introduced into the amplitude estimation loop and frequency estimation loop to eliminate the periodic ripples caused by the residual input odd-order harmonics and step change of the input fundamental component. The parameter design rules of the two filters are discussed in detail. Experimental waveforms of both the conventional EPLL and the proposed HF-EPLL are given and compared with each other to verify the theoretical analysis and advantages of the proposed HF-EPLL.


Delay signal cancellation;Enhanced phase-locked loop;Input DC offset and harmonics;Sliding Goertzel transform


  1. B. P. McGrath, D. G. Holmes, and J. J. H. Galloway, “Power converter line synchronization using a discrete Fourier transform (DFT) based on variable sampling rate,” IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 877–884, Apr. 2005.
  2. M. A. Perez, J. R. Espinoza, L. A. Moran, M. A. Torres, and E. A. Araya, “A robust phase-locked loop algorithm to synchronize static-power converters with polluted AC systems,” IEEE Trans. Ind. Electron., Vol. 55, No. 5, pp. 2185-2192, May 2008.
  3. I. Carugati, P. Donato, S. Maestri, D. Carrica, and M. Benedetti, “Frequency adaptive PLL for polluted single-phase grids,” IEEE Trans. Power Electron., Vol. 27, No. 5, pp. 2396-2404, May 2012.
  4. M. Karimi-Ghartemani, B. Ooi, and A. Bakhshai, “Application of enhanced phase-locked loop system to the computation of synchrophasors,” IEEE Trans. Power Del., Vol. 26, No. 1, pp. 22-32, Jan. 2011.
  5. M. Karimi-Ghartemani, “Linear and pseudolinear enhanced phased- locked loop (EPLL) structures,” IEEE Trans. Ind. Electron., Vol. 61, No. 3, pp. 1464-1474, Mar. 2014,.
  6. M. Karimi-Ghartemani, S. A. Khajehoddin, K. P. Jain, and A. Bakhshai, “Derivation and design of in-loop filters in phase-locked loop systems,” IEEE Trans. Instrum. Meas., Vol. 61, No. 4, pp. 930-939, Apr. 2012.
  7. M. Karimi-Ghartemani, S. A. Khajehoddin, K. P. Jain, and A. Bakhshai, “Comparison of two methods for addressing DC component in phase-locked loop systems,” Energy Conversion Congress and Exposition (ECCE), 2011 IEEE, Vol. 10, pp. 3053-3058, 2011.
  8. M. Karimi-Ghartemani, S. A. Khajehoddin, P. Jain, A. Bakhshai, and M. Mojiri, “Addressing dc component in PLL and notch filter algorithms,” IEEE Trans. Power Electron., Vol. 27, No. 1, pp. 78-86, Jan. 2012.
  9. L. Wang, Q. Jiang, L. Hong, C. Zhang, and Y. Wei, “A novel phase-locked loop based on frequency detector and initial phase angle detector,” IEEE Trans. Power Electron., Vol. 28, No. 10, pp. 4538-4549, Oct. 2013.
  10. F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1398-1409, Oct. 2006.
  11. A. Teke, M. E. Meral, and M. U. Cuma, “OPEN unified power quality conditioner with control based on enhanced phase locked loop,” IET Gener. Transm. Distrib, Vol. 7, No. 3, pp. 254-264, Mar. 2013.
  12. R. S. Filho, P. Seixas, P. Cortizo, A. Souza, and L. A. B. Torres, “Comparison of three single-phase PLL algorithms for UPS applications,” IEEE Trans. Ind. Electron., Vol. 55, No. 8, pp. 2923-2932, Aug. 2008.
  13. M. Karimi-Ghartemani, H. Karimi, and M. R. Iravani, “A magnitude/phase-locked loop system based on estimation of frequency and in-phase/quadrature-phase amplitudes,” IEEE Trans. Ind. Electron., Vol. 51, No. 2, pp. 511-517, Feb. 2004.
  14. S. M. Silva, B. M. Lopes, B. J. C. Filho, R. P. Campana, and W. C. Bosventura, "Performance evaluation of PLL algorithms for single-phase grid-connected systems," in Proc. IEEE 39th Ind. Appl. Soc. Annu. Meet. Ind. Appl. Conf., Vol. 4, pp. 2259-2263, 2004.
  15. A. Nicastri and A. Nagliero, "Comparison and evaluation of the PLL techniques for the design of the grid-connected inverter systems," in Proc. IEEE Int. Symp. Ind. Electron., Vol. 7, pp. 3865-3870, 2010.
  16. F. Xiong, W. Yue, L. Ming, and L. Jinjun, "A novel frequency-adaptive PLL for single-phase grid-connected converters," in Proc. IEEE Energy Convers. Congr. Expo., Vol. 9, pp. 414-419, 2010.
  17. S. Golestan, M. Monfared, F. D. Freijedo, and J. M. Guerrero, “Dynamics assessment of advanced single-phase PLL structures,” IEEE Trans. Ind. Electron., Vol. 60, No. 6, pp. 2167-2177, Jun. 2013.
  18. A. Ozdemir, I. Yazici, C. Vural, “Fast and robust software-based digital phase-locked loop for power electronics applications,” IET Gener. Transm. Distrib, Vol. 7, No. 12, pp. 1435-1441, Dec. 2013.

Cited by

  1. Virtual quadrature-coordinate EPLL for single-phase grid information synchronisation pp.1350-911X, 2018,