DOI QR코드

DOI QR Code

A New Control Strategy for a Three-Phase PWM Current-Source Rectifier in the Stationary Frame

Guo, Qiang;Liu, Heping;Zhang, Yi

  • Received : 2014.12.11
  • Accepted : 2015.03.01
  • Published : 2015.07.31

Abstract

This paper presents a novel power control strategy for PWM current-source rectifiers (CSRs) in the stationary frame based on the instantaneous power theory. In the proposed control strategy, a virtual resistance based on the capacitor voltage feedback is used to realize the active damping. In addition, the proportional resonant (PR) controller under the two-phase stationary coordinate is designed to track the ac reference current and to avoid the strong coupling brought about by the coordinate transformation. The limitations on improving steady-state performance of the PR controller is investigated and mitigated using a cascaded lead-lag compensator. In the z-domain, a straightforward procedure is developed to analyze and design the control-loop with the help of MATLAB/SISO software tools. In addition, robustness against parameter variations is analyzed. Finally, simulation and experimental results verify the proposed control scheme and design method.

Keywords

Active damping;Controller design;Current-source rectifier;Proportional resonant;Pulse-width modulated;Stability

References

  1. S. G. Parker, B. P. McGrath, and D. G Holmes, “Regions of active damping control for LCL filters,” IEEE Trans. Ind. Appl., Vol. 50, No. 1, pp. 424-432, Jan./Feb. 2014. https://doi.org/10.1109/TIA.2013.2266892
  2. D. H. Pan, X. B. Ruan, C. L. Bao, W. W. Li, and X. H. Wang, “Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter,” IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3414-3427, Jul. 2014. https://doi.org/10.1109/TPEL.2013.2279206
  3. A. Yepes, F. Freijedo, J. Doval-Gandoy, O. Lopez, J. Malvar, and P. Fernandez-Comesana, “Effects of discretization methods on the performance of resonant controllers,” IEEE Trans. Power Electron., Vol. 25, No. 7, pp. 1692-1712, Jul. 2010. https://doi.org/10.1109/TPEL.2010.2041256
  4. O. Hegazy, R. Barrero, J. Van Mierlo, P. Lataire, N. Omar, and T. Coosemans, “An advanced power electronics interface for electric vehicles applications”, IEEE Trans. Power Electron., Vol. 28, No. 12, pp. 1-14, Dec. 2013. https://doi.org/10.1109/TPWRD.2013.2281748
  5. R. Pena-Alzola, M. Liserre, F. Blaabjerg, R. Sebastian, J. Dannehl, and F.W. Fuchs, “Systematic design of the lead-lag network method for active damping in LCL-filter based three phase converters,” IEEE Trans. Ind. Informat., Vol. 10, No. 1, pp. 43-52, Feb. 2014. https://doi.org/10.1109/TII.2013.2263506
  6. K. Wei, Z. Lixia, and W. Yansong, “Study on output characteristic of bi-direction current source converters,” IET Power Electron., Vol. 5, No. 7, pp. 929-934, Aug. 2012. https://doi.org/10.1049/iet-pel.2011.0267
  7. Z. Li, Y. Li, P. Wang, H. Zhu, C. Liu, and W. Xu, “Control of three phase boost-type PWM rectifier in stationary frame under unbalanced input voltage,” IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2521-2530, Oct. 2010. https://doi.org/10.1109/TPEL.2010.2049030
  8. D. Roiu, R. I. Bojoi, L. R. Limongi, and A. Tenconi, “New stationary frame control scheme for three-phase PWM rectifiers under unbalanced voltage dips conditions,” IEEE Trans. Ind. Appl., Vol. 46, No. 1, pp. 268-277, Jan./Feb. 2010. https://doi.org/10.1109/TIA.2009.2036674
  9. C. Xia, Z. Wang, T. Shi, and X. He, “An improved control strategy of triple line-voltage cascaded voltage source converter based on proportional-resonant controller,” IEEE Trans. Ind. Electron., Vol. 60, No. 7, pp. 2894-2908, Jul. 2013. https://doi.org/10.1109/TIE.2012.2222854
  10. H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, Wiley-IEEE Press, Hoboken, Chap. 3, 2007.
  11. R. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, "Proportional resonant controllers and filters for grid-connected voltage-source converters," in IEE Proc. Electric Power Appl., Vol. 153, No. 5, pp. 201-209, 2006.
  12. M. Liserre, R. Teodorescu, and F. Blaabjerg, “Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values,” IEEE Trans. Power Electron., Vol. 21, No. 1, pp. 263-272, Jan.2006. https://doi.org/10.1109/TPEL.2005.861185
  13. H.-J. Lee, S. Jung, and S.-K. Sul, “A current controller design for current source inverter-fed ac machine drive system,” IEEE Trans. Power Electron., Vol. 28, No. 3, pp. 1366-1381, Mar. 2013. https://doi.org/10.1109/TPEL.2012.2208985
  14. Y. W. Li, B. Wu, N. Zargari, J. Wiseman, and D. Xu, “Damping of PWM current-source rectifier using a hybrid combination approach,” IEEE Trans. Power Electron., Vol. 22, No. 4, pp. 1383-1393, Jul. 2007. https://doi.org/10.1109/TPEL.2007.900499
  15. Y.W Li, “Control and resonance damping of voltage-source and current-source converters with LC filters,” IEEE Trans. Ind. Electron., Vol. 56, No. 5, pp. 1511-1521, May 2009. https://doi.org/10.1109/TIE.2008.2009562
  16. Z. H. Bai, H. Ma, D. W. Xu, and B. Wu, “Control strategy with a generalized DC current balancing method for multi-module current-source converter,” IEEE Trans. Power Electron., Vol. 29, No. 1, pp. 366-373, Jan. 2014. https://doi.org/10.1109/TPEL.2013.2252628
  17. Z. H. Bai, H. Ma, D. W. Xu, B. Wu, Y. T. Fang, and Y. Y. Yao, “Resonance damping and harmonic suppression for grid-connected current-source converter,” IEEE Trans. Ind. Electron., Vol. 61, No. 7, pp. 3146-3154, Jul. 2014. https://doi.org/10.1109/TIE.2013.2281173
  18. M. H. Bierhoff and F. W. Fuchs, “Active damping for three-phase PWM rectifiers with high-order line-side filters,” IEEE Trans. Ind. Electron., Vol. 56, No. 2, pp. 371-379, Feb. 2009. https://doi.org/10.1109/TIE.2008.2007950
  19. M. Salo and H. Tuusa, “A vector controlled current-source PWM rectifier with a novel current damping method,” IEEE Trans. Power Electron., Vol. 15, No. 3, pp. 464-470, May 2000. https://doi.org/10.1109/63.844506
  20. J. C. Wiseman and B. Wu, “Active damping control of a high-power PWM current-source rectifier for line-current THD reduction,” IEEE Trans. Ind. Electron., Vol. 52, No. 3, pp. 758-764, Jun. 2005. https://doi.org/10.1109/TIE.2005.843939
  21. F. Liu, B. Wu, N. R. Zargari, and M. Pande, “An active damping method using inductor-current feedback control for high-power PWM current source rectifier,” IEEE Trans. Power Electron., Vol. 26, No. 9, pp. 2580-2587, Sep. 2011. https://doi.org/10.1109/TPEL.2011.2111423
  22. M. Su, H. Wang, Y Sun, J. Yang, W. Xiong, and Y. Liu, “AC/DC matrix converter with an optimized modulation strategy for V2G applications,” IEEE Trans. Power Electron., Vol. 28, No. 12, pp. 5736-5745, Dec. 2013. https://doi.org/10.1109/TPEL.2013.2250309
  23. H. Bilgin and M. Ermis, “Design and implementation of a current-source converter for use in industry applications of D-STATCOM,” IEEE Trans. Power Electron., Vol. 25, No. 8, pp. 1943-1957, Aug. 2010. https://doi.org/10.1109/TPEL.2010.2043958
  24. A. A. A. Radwan and Y. A.-R. I. Mohamed, “Analysis and active suppression of ac- and dc-side instabilities in grid-connected current-source converter-based photovoltaic system,” IEEE Trans. Sustain. Energy, Vol. 4, No. 3, pp. 443-450, Jul. 2011.
  25. A. Bouafia, J. -P. Gaubert, and F. Krim, “Predictive direct power control of three-phase pulse width modulation (PWM) rectifier using space-vector modulation (SVM),” IEEE Trans. Power Electron., Vol. 25, No.1, pp. 228-236, Jan. 2010. https://doi.org/10.1109/TPEL.2009.2028731
  26. X. H. Wu, S. K. Panda, and J. X. Xu, “Design of a plug-in repetitive control scheme for eliminating supply-side current harmonics of three-phase PWM boost rectifiers under generalized supply voltage conditions,” IEEE Trans. Power Electron., Vol. 25, No. 7, pp. 1800-1810, Jul. 2010. https://doi.org/10.1109/TPEL.2010.2042304
  27. W. Zhang, Y. Hou, X. Liu, and Y. Zhou, “Switched control of three-phase voltage source PWM rectifier under a wide-range rapidly varying active load,” IEEE Trans. Power Electron., Vol. 27, No. 2, pp. 881-890, Feb. 2012. https://doi.org/10.1109/TPEL.2010.2095507
  28. Y. Shtessel, S. Baev, and H. Biglari, “Unity power factor control in three phase ac/dc boost converter using sliding modes,” IEEE Trans. Ind. Electron., Vol. 55, No. 11, pp. 3874-3882, Nov. 2008. https://doi.org/10.1109/TIE.2008.2003203
  29. Y. Neba, “A simple method for suppression of resonance oscillation in PWM current source converter,” IEEE Trans. Power Electron., Vol. 20, No. 1, pp. 132-139, Jan. 2005. https://doi.org/10.1109/TPEL.2004.839822
  30. J. R. Rodriguez, J. W. Dixon, J. R. Esponoza, J. Pontt, and P. Lezana, “PWM regenerative rectifiers: State of the art,” IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 5-22, Feb. 2005. https://doi.org/10.1109/TIE.2004.841149
  31. T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems-Part II,” IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 543-560, Feb. 2014. https://doi.org/10.1109/TPEL.2013.2258472
  32. A. Stupar, T. Friedli, J. Minibock, and J. W. Kolar, “Towards a 99% efficient three-phase buck-type PFC rectifier for 400-V dc distribution systems,” IEEE Trans. Power Electron., Vol. 27, No. 4, pp. 1732-1744, Apr. 2012. https://doi.org/10.1109/TPEL.2011.2166406
  33. Z. Bai, X. Ruan, and Z. Zhang, “A generic six-step direct PWM (SS-DPWM) scheme for current source converter,” IEEE Trans. Power Electron., Vol. 25, No. 3, pp. 659-666, Mar. 2010. https://doi.org/10.1109/TPEL.2009.2035122
  34. K. Basu, A. K. Sahoo, V. Chandrasekaran, and N. Mohan, “Grid-side ac line filter design of a current source rectifier with analytical estimation of input current ripple,” IEEE Trans. Power Electron., Vol. 29, No. 12, pp. 6394-6405, Dec. 2014. https://doi.org/10.1109/TPEL.2014.2305435
  35. M. H. Ali, B. Wu, and R. A. Dougal, “An overview of SMES applications in power and energy systems,” IEEE Trans. Sustain. Energy, Vol. 1, No. 1, pp. 38-47, Apr. 2010. https://doi.org/10.1109/TSTE.2010.2044901

Cited by

  1. A Novel Control Scheme for T-Type Three-Level SSG Converters Using Adaptive PR Controller with a Variable Frequency Resonant PLL vol.16, pp.3, 2016, https://doi.org/10.6113/JPE.2016.16.3.1176