DOI QR코드

DOI QR Code

Design and Implementation of Finger Language Translation System using Raspberry Pi and Leap Motion

라즈베리 파이와 립 모션을 이용한 지화 번역 시스템 설계 및 구현

Jeong, Pil-Seong;Cho, Yang-Hyun
정필성;조양현

  • Received : 2015.07.20
  • Accepted : 2015.08.19
  • Published : 2015.08.20

Abstract

Deaf are it is difficult to communicate to represent the voice heard, so theay use mostly using the speech, sign language, writing, etc. to communicate. It is the best way to use sign language, in order to communicate deaf and normal people each other. But they must understand to use sign language. In this paper, we designed and implementated finger language translation system to support communicate between deaf and normal people. We used leap motion as input device that can track finger and hand gesture. We used raspberry pi that is low power sing board computer to process input data and translate finger language. We implemented application used Node.js and MongoDB. The client application complied with HTML5 so that can be support any smart device with web browser.

Keywords

Finger Language;Leap Motion;Raspberry Pi;Assistive Technology Device

References

  1. Yang Quan; Peng jinye, “Application of improved sign language recognition and synthesis technology in IB”, Industrial Electronics and Applications, pp.1629–1634, 2008.
  2. Ji-Won Song, Sung-Ho Yang, "Design of Communication System for the Hearing Impaired", Journal of Korean Society Design Science, vol.22, no.1, pp.197-206, 2009.
  3. Sung-Wook Park, Bo-Hyeun Wang, "Web-based Text-To-Sign Language Translating System", Journal of Korean Institute of Intelligent Systems, vol.24, no.3, pp.265-269, 2014. https://doi.org/10.5391/JKIIS.2014.24.3.265
  4. Ki-woong Park, Tae-il Jeon, "R&D Status and Industry Prospects of Wearable Device", Institute for information & communications Technology Promotion, 2015.
  5. Nod Inc, https://nod.com/
  6. Myo-Gesture control armband by Thalmic Labs, https://www.thalmic.com/myo/
  7. Korea Electronics Technology Institute, http://www.keti.re.kr
  8. Chirs Harrison, http://www.chrisharrison.net/index.php/Research/OmniTouch
  9. Gammermann, “Support vector machine learning algorithm and transduction”, A. Computational statistics, vol.15 no.1, 2000.
  10. William L. Heward, Exceptional Children:An Introduction to Special Education, 10th ed, Pearson, 2012.