DOI QR코드

DOI QR Code

Yeasts in the Flowers of Wild Fleabane [Erigeron annus (L.) Pers.]

  • Kim, Jong-Shik ;
  • Kim, Dae-Shin
  • Received : 2015.05.14
  • Accepted : 2015.06.29
  • Published : 2015.09.30

Abstract

BACKGROUND: Yeasts associated with fleabane flowers were identified using isolation methods previously applied in yeast biotechnology. A culture-based approach was required for isolation of many yeast strains associated with fleabane. METHODS AND RESULTS: We spread homogenized fleabane flowers onto GPY medium containing chloramphenicol, streptomycin, Triton X-100, and L-sorbose. We isolated 79 yeast strains from the flowers of wild fleabane, and identified the yeasts via phylogenetic analysis of isolates from agar plates. The yeast species included 39 isolates of Aureobasidium pullulans, 17 of the genus Candida, 14 of the genus Rhodosporidium, 6 of the genus Cryptococcus, and 3 of the genus Rhodotorula. CONCLUSION: Yeast isolates associated with fleabane flowers included A. pullulans (39 isolates) and other yeast species (40 isolates). Such yeast isolates may have biotechnological potential.

Keywords

Fleabane;Erigeron annus (L.) Pers.;ITS gene;Wild yeast

References

  1. Botha, A. (2011). The importance and ecology of yeasts in soil. Soil Biology and Biochemistry, 43(1), 1-8. https://doi.org/10.1016/j.soilbio.2010.10.001
  2. Cheng, K. C., Demirei, A., & Catchmark, J. M. (2011). Pullulan: biosynthesis, production, and applications. Applied Microbiology and Biotechnology, 92(1), 29-44. https://doi.org/10.1007/s00253-011-3477-y
  3. Choi, S. C., Kim, M. U., & Kim, J. S. (2013). Selective isolation and phylogeny of the yeast species associated with Aloe vera and Aloe saponaria. Korean Journal of Environmental Agriculture, 32(3), 240-243. https://doi.org/10.5338/KJEA.2013.32.3.240
  4. Deak, T. (2009). Ecology and biodiversity of yeasts with potential value in biotechnology. Yeast biotechnology: diversity and applications (ed. Satyanarayana, G., Kunze, G.), pp. 151-168. Springer Science + Buisiness Media B.V., Dordrecht, Netherlands.
  5. Fonseca, A., & Inacio, J. (2006). Phylloplane yeasts. Biodiversity and ecophysiology of yeast (ed. Rosa, C. A., Peter, G.), pp. 263-301. Springer, Berlin, Germany.
  6. Halloran, S. T., Mauck, K. E., Fleischer, S. F., & Tumlinson, J. H. (2013). Volatiles from intact and Lygus-damaged Erigeron annuus (L.) Pers. are highly attractive to ovipositing Lygus and its parasitoid Peristenus relictus Ruthe. Journal of Chemical Ecology, 39(8), 1115-1128. https://doi.org/10.1007/s10886-013-0331-y
  7. Kappeli, O., & Fiechter, A. (1977). Component from the cell surface of the hydrocarbon-utilizing yeast Candida tropicalis with possible relation to hydrocarbon transport. Journal of Bacteriology, 131(3), 917-921.
  8. Karatay, S. E., & Donmez, G. (2010). Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Bioresource Technology, 101(20), 7988-7990. https://doi.org/10.1016/j.biortech.2010.05.054
  9. Kim, J. S., & Kim, D. S. (2015). Phylogeny of the yeast species isolated from wild tiger lily (Lilium lancifolium Thunb.). Korean Journal of Environmental Agriculture, 34(2), 149-154. https://doi.org/10.5338/KJEA.2015.34.2.13
  10. Kim, J. S., Lee, I. K., & Yun, B. S. (2015). A novel biosurfactant production by Aureobasidium pullulans L3-GPY from a tiger lily wild flower, Lilium lancifolium Thunb. PLoS One, 10(4), e0122917. https://doi.org/10.1371/journal.pone.0122917
  11. Korea National Arboretum, (2012). Field Guide Naturalized Plants of Korea, p. 239, GeoBook, Seoul, Korea.
  12. Leathers, T. D., Rich, J. O., Anderson, A. M., & Manitchotpisit, P. (2013). Lipase production by diverse phylogenetic clades of Aureobasidium pullulans. Biotechnology Letters, 35(10), 1701-1706. https://doi.org/10.1007/s10529-013-1268-5
  13. Lee, T. B. (2014). Coloured Flora of Korea, Vol. II, p. 327, Hayangmunsa, Seoul, Korea.
  14. Lee, W. T. (1996). Coloured Standard Illustrations of Korean Plants, p. 360, Academy Publishing Co., Seoul, Korea.
  15. Ma, Z. C., Chi, Z., Geng, Q., Zhang, F., & Chi, Z. M. (2012). Disruption of the pullulan synthetase gene in siderophore-producing Aureobasidium pullulans enhances siderophore production and simplifies siderophore extraction. Process Biochemistry, 47(12), 1807-1812. https://doi.org/10.1016/j.procbio.2012.06.024
  16. Mari, M., Martini, C., Spadoni, A., Rouissi, W., & Bertolini, P. (2012). Biocontrol of apple postharvest decay by Aureobasidium pullulans. Postharvest Biology and Technology, 73, 56-62. https://doi.org/10.1016/j.postharvbio.2012.05.014
  17. Muramatsu, D., Iwai, A., Aoki, S., Uchiyama, H., Kawata, K., Nakayama, Y., Nikawa, Y., Kusanbo, K., Okabe, M., & Miyazaki, T. (2012). ${\beta}$-Glucan derived from Aureobasidium pullulans is effective for the prevention of influenza in mice. PLoS One, 7(7), e41399. https://doi.org/10.1371/journal.pone.0041399
  18. Nagata, N., Nakahara, T., & Tabuchi, T. (1993). Fermentation production of poly(${\beta}$-L-malic acid), a polyelectrolytic biopolyester, by Aureobasidium sp. Bioscience, Biotechnology, and Biochemistry, 57(4), 638-642. https://doi.org/10.1271/bbb.57.638
  19. Park, S. H. (2009). New illustration and Photographs of Naturalized Plants of Korea, p. 124, Ilchokak, Seoul, Korea.
  20. Price, N. P. J., Manitchotpisit, P., Vermillion, K. E., Bowman, M. J., & Leathers, T. D. (2013). Structural characterization of novel extracellular liamocins (mannitol oils) produced by Aureobasidium pullulans strain NRRL 50380. Carbohydrate Research, 370(5), 24-32. https://doi.org/10.1016/j.carres.2013.01.014
  21. Raspor, P., & Zupan, J. (2006). Yeast in extreme environments. Biodiversity and ecophysiology of yeasts. (eds. Rosa, C. A., Peter, G.), pp. 370-417. Springer, Berlin, Germany.
  22. Rich, J. O., Manitchotpisit, P., Peterson, S. W., & Leathers, T. D. (2011). Laccase production by diverse phylogenetic clades of Aureobasidium pullulans. Rangsit Journal of Arts and Sciences, 1(1), 41-47.
  23. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425.
  24. Tamang, J. P., & Fleet, G. H. (2009). Yeasts diversity in fermented foods and beverages. Yeast biotechnology: diversity and applications (ed. Satyanarayana, G., Kunze, G.), pp. 169-198. Springer Science + Buisiness Media B.V., Dordrecht, Netherlands.
  25. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731-2739. https://doi.org/10.1093/molbev/msr121
  26. Turk, M., Mejanelle, L., Sentjurc, M., Grimalt, J. O., Gunde-Cimerman, N., & Plemenitas, A. (2004). Saltinduced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles, 8(1), 53-61. https://doi.org/10.1007/s00792-003-0360-5
  27. White,T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplicationand direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. (eds. Innis, M. A., Gelfand, D. H., Sninsky, J. J., White, T. J.), pp. 315-322. Academic Press, San Diego, USA.
  28. Yoo, N. H., Jang, D. S., Yoo, J. L., Lee, Y. M., Kim, Y. S., Cho, J. H., & Kim, J. S. (2008). Erigeroflavanone, a flavanone derivative from the flowers of Erigeron annuus with protein glycation and aldose reductase inhibitory activity. Journal of Natural Products, 71(4), 713-715. https://doi.org/10.1021/np070489a
  29. Yurlova, N. A., & de Hoog, G. S. (1997). A new variety of Aureobasidium pullulans characterized by exopolysaccharide structure, nutritional physiology and molecular features. Antonie Van Leeuwenhoek, 72(2), 141-147. https://doi.org/10.1023/A:1000212003810

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)