Kyungpook Mathematical Journal
- Volume 55 Issue 3
- /
- Pages.587-595
- /
- 2015
- /
- 1225-6951(pISSN)
- /
- 0454-8124(eISSN)
DOI QR Code
The Diophantine Equation ax6 + by3 + cz2 = 0 in Gaussian Integers
- IZADI, FARZALI (Department of Mathematics, Faculty of Science, Urmia university) ;
- KHOSHNAM, FOAD (Department of Mathematics, Faculty of Science, Urmia university)
- Received : 2014.07.16
- Accepted : 2015.02.21
- Published : 2015.09.23
Abstract
In this article, we will examine the Diophantine equation
Keywords
Diophantine equations;Gaussian integers;Elliptic curves;ranks;torsion group
File
References
- H. Cohen, Number Theory Volume I: Tools and Diophantine Equations, Graduate Texts in Mathematics 239, Springer-Verlag, ISBN 978-0-387-49922-2. page 389.
- J. Cremona, mwrank program, Available at http://maths.nottingham.ac.uk/personal/jec/ftp/progs/.
-
E. Lampakis, In Gaussian integers,
$x^3+y^3=z^3$ has only trivial solutions, Elec. J. Comb. N. T, 8(2008), #A32. - M. A. Kenku, F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J., 109(1988), 125-149.
- T. Nagell, Introduction to number theory, Chelsea Publ. Comp., New York, 1981.
-
F. Najman, The diophantine equation
$x^4{\pm}y^4=iz^2$ in Gaussian integers, Amer. Math. Monthly, 117(2010), 637-641. https://doi.org/10.4169/000298910X496769 - F. Najman, Torsion of elliptic curves over quadratic cyclotomic fields, Math. J. Okayama Univ..
- F. Najman, Complete classification of torsion of elliptic curves over quadratic cyclotomic fields, J. Number Theory.
- J. H. Silverman and J. Tate, Rational points on elliptic curves, Undergraduate Texts in Mathemathics, Springer-Verlag, New York, 1992.
- U. Schneiders and H. G. Zimmer, The rank of elliptic curves upon quadratic extensions, Computational Number Theory (A. Petho, H. C. Williams, H. G. Zimmer, eds.), de Gruyter, Berlin, 1991, 239-260.