DOI QR코드

DOI QR Code

Polynomial Numerical Index of lp (1 < p < ∞)

  • KIM, SUNG GUEN
  • Received : 2014.05.26
  • Accepted : 2014.10.23
  • Published : 2015.09.23

Abstract

We present some estimates for the polynomial numerical index of $l_p$ (1 < p < ${\infty}$).

Keywords

Homogeneous polynomial;numerical radius;polynomial numerical index

References

  1. F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser., 2, (Cambridge Univ. Press, 1971).
  2. F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser., 10, (Cambridge Univ. Press, 1973).
  3. Y. S. Choi, D. Garcia, S. G. Kim, and M. Maestre, The polynomial numerical index of a Banach space, Proc. Edinburgh Math. Soc., 49(2006), 39-52. https://doi.org/10.1017/S0013091502000810
  4. Y. S. Choi, D. Garcia, S. G. Kim, and M. Maestre, Composition, numerical range and Aron-Berner extension, Math. Scand., 103(2008), 97-110.
  5. Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc., 54(2)(1996), 135-147. https://doi.org/10.1112/jlms/54.1.135
  6. S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London (1999).
  7. J. Duncan, C. M. McGregor, J. D. Pryce, and A. J. White, The numerical index of a normed space, J. London Math. Soc., 2(1970), 481-488.
  8. D. Garcia, B. Grecu, M. Maestre, M. Martin, and J. Meri, Two dimensional Banach spaces with polynomial numerical index zero, Linear Alg. Appl., 430(2009), 2488-2500. https://doi.org/10.1016/j.laa.2008.12.020
  9. D. Garcia, B. Grecu, M. Maestre, M. Martin, and J. Meri, Polynomial numerical indices of C(K) and $L_1(\mu)$, Proc. Amer. Math. Soc., 142(2014), 1229-1235.
  10. V. Kadets, M. Martin, and R. Paya, Recent progress and open questions on the numerical index of Banach spaces, Rev. R. Acad. Cien. Serie A. Mat., 2000(2006), 155-182.
  11. S. G. Kim, M. Martin, and J. Meri, On the polynomial numerical index of the real spaces $c_0,l_1$ and $l_{\infty}$, J. Math. Anal. Appl., 337(2008), 98-106. https://doi.org/10.1016/j.jmaa.2007.03.101
  12. S. G. Kim, Three kinds of numerical indices of a Banach space, Math. Proc. Royal Irish Acad., 112A(2012), 21-35.
  13. H. J. Lee, Banach spaces with polynomial numerical index 1, Bull. Lond. Math. Soc., 40(2)(2008), 193-198. https://doi.org/10.1112/blms/bdm113
  14. G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc., 100(1961), 29-43. https://doi.org/10.1090/S0002-9947-1961-0133024-2
  15. M. Martin and J. Meri, A note on the numerical index of the $L_p$ space of dimension 2, Linear and Multilinear Algebra, 57(2009), 201-204. https://doi.org/10.1080/03081080701650739

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)