DOI QR코드

DOI QR Code

TAIL ASYMPTOTICS FOR THE QUEUE SIZE DISTRIBUTION IN AN MX/G/1 RETRIAL QUEUE

  • KIM, JEONGSIM
  • Received : 2014.11.26
  • Accepted : 2015.03.20
  • Published : 2015.05.30

Abstract

We consider an MX/G/1 retrial queue, where the batch size and service time distributions have finite exponential moments. We show that the tail of the queue size distribution is asymptotically given by a geometric function multiplied by a power function. Our result generalizes the result of Kim et al. (2007) to the MX/G/1 retrial queue.

Keywords

MX/G/1 retrial queue;tail asymptotics;queue size distribution

References

  1. S.A. Grishechkin, Multiclass batch arrival retrial queues analyzed as branching process with immigration, Queueing Systems 11 (1992), 395-418. https://doi.org/10.1007/BF01163863
  2. J. Kim, B. Kim and S-S. Ko, Tail asymptotics for the queue size distribution in an M/G/1 retrial queue, J. App. Probab. 44 (2007), 1111-1118. https://doi.org/10.1239/jap/1197908829
  3. V.G. Kulkarni, Expected waiting times in a multiclass batch arrival retrial queue, J. Appl. Probab. 23 (1986), 144-154. https://doi.org/10.2307/3214123
  4. V.G. Kulkarni and L.H. Liang, Retrial queues revisited, In: Frontiers in Queueing: Models and Applications in Science and Engineering (J.H. Dshalalow, ed.), CRC Press, Boca Raton, 1997, 19-34.
  5. W. Shang, L. Liu and Q. Li, Tail asymptotics for the queue length in an M/G/1 retrial queue, Queueing Systems 52 (2006), 193-198. https://doi.org/10.1007/s11134-006-5223-1
  6. Y.W. Shin and D.H. Moon, On approximations for GI/G/c retrial queues, J. Appl. Math. & Informatics 31 (2013), 311-325. https://doi.org/10.14317/jami.2013.311
  7. K. Yamamuro, The queue length in an M/G/1 batch arrival retrial queue, Queueing Systems 70 (2012), 187-205. https://doi.org/10.1007/s11134-011-9268-4
  8. T. Yang and J.G.C. Templeton, A survey on retrial queues, Queueing Systems 2 (1987), 201-233. https://doi.org/10.1007/BF01158899
  9. J.R. Artalejo, A classified bibliography of research on retrial queues: Progress in 1990-1999, Top 7 (1999), 187-211. https://doi.org/10.1007/BF02564721
  10. J.R. Artalejo, Accessible bibliography on retrial queues, Math. Comput. Model. 30 (1999), 1-6. https://doi.org/10.1016/S0895-7177(99)00128-4
  11. J.R. Artalejo, Accessible bibliography on retrial queues: Progress in 2000-2009, Math. Com-put. Model. 51 (2010), 1071-1081. https://doi.org/10.1016/j.mcm.2009.12.011
  12. J.R. Artalejo and A. Gómez-Corral, Retrial Queueing Systems, Springer, 2008.
  13. G.I. Falin, Aggregate arrival of customers in a one-line system with repeated calls, Ukrainian Mathematical Journal 28 (1976), 437-440. https://doi.org/10.1007/BF01101670
  14. G.I. Falin, On a multiclass batch arrival retrial queue, Adv. Appl. Probab. 20 (1988), 483-487. https://doi.org/10.2307/1427403
  15. G.I. Falin, A survey of retrial queues, Queueing Systems 7 (1990), 127-168. https://doi.org/10.1007/BF01158472
  16. G.I. Falin and J.G.C. Templeton, Retrial Queues, Chapman & Hall, London, 1997.

Acknowledgement

Grant : 집단도착을 갖는 큐잉모델의 분석