Superconducting Properties and Phase Formation of MgB2 Superconductors Prepared by the Solid State Reaction Method using MgB4 and Mg Powder

MgB4와 Mg 분말을 원료로 사용하여 고상반응법으로 제조한 MgB2 초전도체의 상생성과 초전도 특성

  • Received : 2015.06.29
  • Accepted : 2015.10.16
  • Published : 2015.10.28


$MgB_2$ bulk superconductors are synthesized by the solid state reaction of ($MgB_4$+xMg) precursors with excessive Mg compositions (x=1.0, 1.4, 2.0 and 2.4). The $MgB_4$ precursors are synthesized using (Mg+B) powders. The secondary phases ($MgB_4$ and MgO) present in the synthesized $MgB_4$ are removed by $HNO_3$ leaching. It is found that the formation reaction of $MgB_2$ is accelerated when Mg excessive compositions are used. The magnetization curves of $Mg_1+_xB_2$ samples show that the transition from the normal state to the superconducting state of the Mg excessive samples with x=0.5 and x=0.7 are sharper than that of $MgB_2$. The highest $J_c-B$ curve at 5 K and 20 K is achieved for x=0.5. Further addition of Mg decreases the $J_c$ owing to the formation of more pores in the $MgB_2$ matrix and smaller volume fraction of $MgB_2$.


$MgB_2$;$MgB_4$;Mg excessive;Critical temperature;Critical current density


  1. K. S. Tan, B. H. Jun and C. J. Kim: J. Korean Phys. Soc., 54 (2009) 1626.
  2. D. Nardelli, D. Matera, M. Vignolo, G. Bovone, A. Palenzona, A. S. Siri and G. Grasso: Supercond. Sci. Technol., 26 (2013) 075010.
  3. A. Ito, A. Yamamoto, J. Shimoyama, H. Ogino and K. Kishio: IEEE Trans. Appl. Supercond., 23 (2013) 7101005.
  4. K. L. Tan, K. Y. Tan, K. P. Lim, S. A. Halim and S. K. Chen: Solid State Sci. Technol., 19 (2011) 15.
  5. C. P. Bean: Rev. Mod. Phys., 36 (1964) 31.
  6. S. T. Kim, D. S. Stone, J.-I. Cho, C.-Y. Jeong, C.-S. Kang and J.-C. Bae: J. Alloys Compd., 470 (2009) 85.
  7. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu: Nature, 410 (2001) 63.
  8. V. Ferrando, P. Orgiani, A. V. Pogrebnyakov, J. Chen, Q. Li, J. M. Redwing, X. X. Xi, J. E. Giencke, C. B. Eom, Q. R. Feng, J. B. Betts and C. H. Mielke: Appl. Phys. Lett., 87 (2005) 252509.
  9. D. K. Finnemore, J. E. Ostenson, S. L. Bud'ko, G. Lapertot and P. C. Canfield: Phys. Rev. Lett., 86 (2001) 2420.
  10. C. Buzea and T. Yamashita: Supercond. Sci. Technol., 14 (2001) R115.
  11. W. Goldacker, S. I. Schlachter, B. Obst, B. Liu, J. Reiner and S. Zimmer: Supercond. Sci. Technol., 17 (2004) S363.
  12. A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, S. Horii and K. Kishio, Supercond. Sci. Technol., 18 (2005) 116.
  13. X. Xu, J. H. Kim, M. S. A. Hossain, J. S. Park, Y. Zhao, S. X. Dou, W. K. Yeoh, M. Rindfleisch and M. Tomsic: J. Appl. Phys., 103 (2008) 023912.
  14. A. Berenov, A. Serquis, X. Z. Liao, Y. T. Zhu, D. E. Peterson, Y. Bugoslavsky, K. A. Yates, M. G. Blamire, L. F. Cohen and J. L. MacManus-Driscoll: Supercond. Sci. Technol., 17 (2004) 1093.
  15. J. D. Moore, G. K. Perkins, W. Branford, K. A. Yates, A. D. Caplin, L. F. Cohen, S. K. Chen, N. A. Rutter and J. L. MacManus-Driscoll: Supercond. Sci. Technol., 20 (2007) S278.
  16. Y. Zhao, Y. Feng, C. H. Cheng, L. Zhou, Y. Wu, T. Machi, Y. Fudamoto, N. Koshizuka and M. Murakami: Appl. Phys. Lett., 79 (2001) 1154.
  17. Y. Sun, D. Yu, Z. Liu, T. Wang, J. He, J. Xiang, D. Zheng and Y. Tian: Supercond. Sci. Technol., 20 (2007) 261.
  18. B. H. Jun, Y. J. Kim, K. S. Tan and C. J. Kim: Supercond. Sci. Technol., 21 (2008) 105006.
  19. K. S. Tan, S. K. Chen, B. H. Jun and C. J. Kim: Supercond. Sci. Technol., 21 (2008) 105013.
  20. J. H. Yi, K. T. Kim, B. H. Jun, J. M. Sohn, B. G. Kim, J. Joo and C. J. Kim: Physica C, 469 (2009) 1192.
  21. C.-J. Kim, J. H. Yi, B.-H. Jun, B. Y. You, S. D. Park and K.-N. Choo: Physica C, 502 (2014) 4.
  22. K. L. Tan, K. P. Lim, A. S. Halim and S. K. Chen: Phys. Status Solidi A, 210 (3) (2013) 616.


Supported by : 한국연구재단