DOI QR코드

DOI QR Code

Sintering of Fe-30 wt% TiC Composite Powders Fabricated from (Fe, TiH2, C) Powder Mixture

(Fe, TiH2, C) 혼합 분말로부터 제조된 Fe-30 wt% TiC 복합재료 분말의 소결

  • Received : 2015.10.08
  • Accepted : 2015.10.21
  • Published : 2015.10.28

Abstract

Fe-30 wt% TiC composite powders are fabricated by in situ reaction synthesis after planetary ball milling of (Fe, $TiH_2$, Carbon) powder mixture. Two sintering methods of a pressureless sintering and a spark-plasma sintering are tested to densify the Fe-30 wt% TiC composite powder compacts. Pressureless sintering is performed at 1100, 1200 and $1300^{\circ}C$ for 1-3 hours in a tube furnace under flowing argon gas atmosphere. Spark-plasma sintering is carried out under the following condition: sintering temperature of $1050^{\circ}C$, soaking time of 10 min, sintering pressure of 50 MPa, heating rate of $50^{\circ}C/min$, and in a vacuum of 0.1 Pa. The curves of shrinkage and its derivative (shrinkage rate) are obtained from the data stored automatically during sintering process. The densification behaviors are investigated from the observation of fracture surface and cross-section of the sintered compacts. The pressureless-sintered powder compacts are not densified even after sintering at $1300^{\circ}C$ for 3 h, which shows a relative denstiy of 66.9%. Spark-plasma sintering at $1050^{\circ}C$ for 10 min exhibits nearly full densification of 99.6% relative density under the sintering pressure of 50 MPa.

Keywords

Fe-TiC;Composite powder;Planetary ball mill;Pressurelss sintering;Spark-plasma sintering

References

  1. R. Tyagi: Wear, 259 (2005) 569. https://doi.org/10.1016/j.wear.2005.01.051
  2. Z. Q. Zhang, P. Shen, Y. Wang, Y. P. Dong and Q. C. Jiang: J. Mater. Sci., 42 (2007) 8350. https://doi.org/10.1007/s10853-006-0764-6
  3. S. C. Tjong and Z. Ma: Mater. Sci. Eng. R, 29 (2000) 49. https://doi.org/10.1016/S0927-796X(00)00024-3
  4. I. Ibrahim, F. Mohamed and E. Lavernia: J. Mater. Sci., 26 (1991) 1137. https://doi.org/10.1007/BF00544448
  5. J. Vreeling, V. Ocelik and J. T. M. De Hosson: Acta. Mater., 50 (2002) 4913. https://doi.org/10.1016/S1359-6454(02)00366-X
  6. F. Akhtar and S. Guo: Mater. Charact., 59 (2008) 84. https://doi.org/10.1016/j.matchar.2006.10.021
  7. A. K. Srivastava and K. Das: Mater. Sci. Eng. A, 516 (2009) 1. https://doi.org/10.1016/j.msea.2009.04.041
  8. L. S. Zhong, Y. H. Xu, H. Mirabbos, J. B. Wang and J. Wang: Mater. Des., 32 (2011) 3790. https://doi.org/10.1016/j.matdes.2011.03.031
  9. J. S. Guo, S. J. Wu and G. C. Su: Wear, 269 (2010) 285. https://doi.org/10.1016/j.wear.2010.04.011
  10. F. Akhtar and S. J. Guo: Mater. Charact., 59 (2008) 84. https://doi.org/10.1016/j.matchar.2006.10.021
  11. A. Emamian, S. F. Corbin and A. Khajepour: Surf. Coat. Technol., 206 (2012) 4495. https://doi.org/10.1016/j.surfcoat.2012.01.051
  12. Y. F. Yang, H. Y. Wang, Y. H. Liang, R. Y. Zhao and Q. C. Jiang: Mater. Sci. Eng. A, 474 (2008) 355. https://doi.org/10.1016/j.msea.2007.04.061
  13. X. H. Wang, S. L. Song, Z. D. Zou and S. Y. Qu: Mater. Sci. Eng. A, 441 (2006) 60. https://doi.org/10.1016/j.msea.2006.06.015
  14. J. B. Liu, L. M. Wang and H. Q. Li: Appl. Surf. Sci., 255 (2009) 4921. https://doi.org/10.1016/j.apsusc.2008.12.038
  15. K. Das and T. K. Bandyopadhyay: Mater. Lett., 58 (2004) 1877. https://doi.org/10.1016/j.matlet.2003.11.034
  16. E. Gordo, F. Velasco and N. AntOn: Wear, 239 (2000) 251. https://doi.org/10.1016/S0043-1648(00)00329-X
  17. P. R. Soni: Mechanical alloying: fundamentals and applications, International Science Publishing, Cambridge (1999).
  18. S. M. Zehariad and S. A. Saiidi: Mater. Des., 27 (2006) 684. https://doi.org/10.1016/j.matdes.2004.12.011
  19. I. W. M. Brown and W. R. Owers: Curr. Appl. Phys., 4 (2004) 171. https://doi.org/10.1016/j.cap.2003.11.001
  20. B. H. Li, Y. Liu, J. Li, H. Cao and L. He: J. Mater. Process. Technol., 210 (2010) 91. https://doi.org/10.1016/j.jmatprotec.2009.08.008
  21. K.Q. Feng, Y. Yang, B. L. Shen and L. B. Guo: Mater. Des., 26 (2005) 37. https://doi.org/10.1016/j.matdes.2004.03.014
  22. J. Wang and Y. S. Wang: Mater. Lett., 61 (2007) 4393. https://doi.org/10.1016/j.matlet.2007.02.011
  23. K. Das and T. K. Bandyopadhyay: Mater. Lett., 58 (2004) 1877. https://doi.org/10.1016/j.matlet.2003.11.034
  24. H. G. Zhu, J. Min, J. L. Li, Y. L. Ai, L. Q. Ge and H. Z. Wang: Compos. Sci. Technol., 70 (2010) 2183. https://doi.org/10.1016/j.compscitech.2010.08.021
  25. H.G. Zhu, J. Min, Y. L. Ai, D. Chu, H. Wang and H. Z. Wang: Mater. Sci. Eng. A, 527 (2010) 6178. https://doi.org/10.1016/j.msea.2010.07.001
  26. Z. A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: J. Mater. Sci., 41 (2006) 763. https://doi.org/10.1007/s10853-006-6555-2
  27. H. B. Feng, Y. Zhou, D. C. Jia and Q. C. Meng: Mater. Sci. Eng. A, 390 (2005) 344. https://doi.org/10.1016/j.msea.2004.08.028
  28. B. H. Lee, K. B. Ahn, S. W. Bae, S. W. Bae, H. X. Khoa, B. K. Kim and J. S. Kim: J. Korean Powder Metall. Inst., 22 (2015) 208 (Korean). https://doi.org/10.4150/KPMI.2015.22.3.208
  29. T. Venkateswaran, B. Basu, G. B. Raju and D. Y. Kim: J. Eur. Ceram. Soc., 26 (2006) 2431. https://doi.org/10.1016/j.jeurceramsoc.2005.05.011

Acknowledgement

Supported by : 한국연구재단