DOI QR코드

DOI QR Code

VOLUME RATIOS OF A HYPERSURFACE RELATIVE TO THE FLRW SPACE-TIME

  • KIM, JONG RYUL (Department of Mathematics Kunsan National University)
  • Received : 2015.07.06
  • Published : 2015.10.31

Abstract

We calculate volume ratio of a hypersurface orthogonal to a timelike geodesic relative to that of a hypersurface in the FLRW space-time.

References

  1. J.-H. Eschenburg and J. O'Sullivan, Jacobi tensors and Ricci curvature, Math. Ann. 252 (1980), no. 1, 1-26. https://doi.org/10.1007/BF01420210
  2. J. R. Kim, The upperbound of the volume expansion rate in a Lorentzian manifold, Gen. Relativity Gravitation 42 (2010), no. 2, 403-412. https://doi.org/10.1007/s10714-009-0860-4
  3. J. R. Kim, Erratum to The upperbound of the volume expansion rate in a Lorentzian manifold, Gen. Relativity Gravitation 42 (2010), no. 12, 2981-2982. https://doi.org/10.1007/s10714-010-1094-1
  4. J. R. Kim, Relative Lorentzian volume comparison with integral Ricci and scalar curvature bound, J. Geom. Phys. 61 (2011), no. 6, 1061-1069. https://doi.org/10.1016/j.geomphys.2011.02.005
  5. D. N. Kupeli, On conjugate and focal points in semi-Riemannian geometry, Math. Z. 198 (1988), no. 4, 569-589. https://doi.org/10.1007/BF01162874
  6. B. O'Neil, Semi-Riemannian Geometry with applications to Relativity, Pure Appl. Math., Academic Press, New York, 1983.
  7. S.-H. Paeng, Volume expansion rate of the Lorentzian manifold based on integral Ricci curvature over a timelike geodesic, J. Geom. Phys. 57 (2007), no. 6, 1499-1503. https://doi.org/10.1016/j.geomphys.2006.12.005
  8. P. Petersen and C. Sprouse, Integral curvature bounds, distance estimates and applications, J. Differential Geom. 50 (1998), no. 2, 269-298. https://doi.org/10.4310/jdg/1214461171
  9. P. Petersen and G. Wei, Relative volume comparison with integral curvature bounds, Geom. Funct. Anal. 7 (1997), no. 6, 1031-1045. https://doi.org/10.1007/s000390050036
  10. J.-G. Yun, Volume comparison for Lorentzian warped products with integral curvature bounds, J. Geom. Phys. 57 (2007), no. 3, 903-912. https://doi.org/10.1016/j.geomphys.2006.07.001