DOI QR코드

DOI QR Code

Relation between Resistance and Capacitance in Atomically Dispersed Pt-SiO2 Thin Films for Multilevel Resistance Switching Memory

Pt 나노입자가 분산된 SiO2 박막의 저항-정전용량 관계

  • Choi, Byung Joon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 최병준 (서울과학기술대학교 신소재공학과)
  • Received : 2015.07.27
  • Accepted : 2015.08.02
  • Published : 2015.09.27

Abstract

Resistance switching memory cells were fabricated using atomically dispersed Pt-$SiO_2$ thin film prepared via RF co-sputtering. The memory cell can switch between a low-resistance-state and a high-resistance-state reversibly and reproducibly through applying alternate voltage polarities. Percolated conducting paths are the origin of the low-resistance-state, while trapping electrons in the negative U-center in the Pt-$SiO_2$ interface cause the high-resistance-state. Intermediate resistance-states are obtained through controlling the compliance current, which can be applied to multi-level operation for high memory density. It is found that the resistance value is related to the capacitance of the memory cell: a 265-fold increase in resistance induces a 2.68-fold increase in capacitance. The exponential growth model of the conducting paths can explain the quantitative relationship of resistance-capacitance. The model states that the conducting path generated in the early stage requires a larger area than that generated in the last stage, which results in a larger decrease in the capacitance.

Acknowledgement

Supported by : Seoul National University of Science & Technology

References

  1. S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi and B. H. Park, Appl. Phys. Lett., 85, 5655 (2004). https://doi.org/10.1063/1.1831560
  2. B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg and S. Tiedke, J. Appl. Phys., 98, 033715 (2005). https://doi.org/10.1063/1.2001146
  3. R. Waser, R. Dittmann, G. Staikov and K. Szot, Adv. Mater., 21, 2632 (2009). https://doi.org/10.1002/adma.200900375
  4. J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart and R. S. Williams, Nat. Nanotechnol., 3, 429 (2008). https://doi.org/10.1038/nnano.2008.160
  5. I. G. Baek et al., in IEDM Tech. Dig. (2005), pp. 750-753.
  6. B. Govoreanu, G. S. Kar, Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I. P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D. J. Wouters, J. A. Kittl, M. Jurczak, B.- Leuven and K. U. Leuven, in IEDM Tech. Dig. (2011), pp. 729-732.
  7. H. D. Lee, S. G. Kim, K. Cho, H. Hwang, H. Choi, J. Lee, S. H. Lee, H. J. Lee, J. Suh, S. Chung, Y. S. Kim, K. S. Kim, W. S. Nam, J. T. Cheong, J. T. Kim, S. Chae, E. Hwang, S. N. Park, Y. S. Sohn, C. G. Lee, H. S. Shin, K. J. Lee, K. Hong, H. G. Jeong, K. M. Rho, Y. K. Kim, J. Nickel, J. J. Yang, H. S. Cho, F. Perner, R. S. Williams, J. H. Lee and S. K. Park, in VLSI (2012), pp.151-152.
  8. A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh, Y. Hayakawa, K. Tsuji, S. Yoneda, A. Himeno, K. Shimakawa, T. Takagi and T. Mikawa, in IEEE J. Solid State Circ. (2013), pp. 1-8.
  9. J. J. Yang, D. B. Strukov and D. R. Stewart, Nat. Nanotechnol., 8, 13 (2013).
  10. S. Pi, M. Ghadiri-Sadrabadi, J. C. Bardin and Q. Xia, Nat. Comm., 6, 7519 (2015). https://doi.org/10.1038/ncomms8519
  11. J. G. Perkins, J. Non-Cryst. Sol., 7, 349 (1972). https://doi.org/10.1016/0022-3093(72)90270-0
  12. B. Abeles, P. Sheng, M. D. Coutts and Y. Arie, Adv. Phys., 24, 407 (1975). https://doi.org/10.1080/00018737500101431
  13. Z. Liu, C. Lee, V. Narayanan, G. Pei and E. C. Kan, IEEE Trans. Elec. Dev., 49, 1606 (2002). https://doi.org/10.1109/TED.2002.802617
  14. Z. Liu, C. Lee, V. Narayanan, G. Pei and E. C. Kan, IEEE Trans. Elec. Dev., 49, 1614 (2002). https://doi.org/10.1109/TED.2002.802618
  15. J.-S. Lee, J. Cho, C. Lee, I. Kim, J. Park, Y.-M. Kim, H. Shin, J. Lee and F. Caruso, Nat. Nanotechnol., 2, 790 (2007). https://doi.org/10.1038/nnano.2007.380
  16. T. H. Kim, E. Y. Jang, N. J. Lee, D. J. Choi, K.-J. Lee, J. Jang, J. Choi, S. H. Moon and J. Cheon, Nano Lett., 9, 2229 (2009). https://doi.org/10.1021/nl900030n
  17. A. B. K. Chen, S. G. Kim, Y. Wang, W.-S. Tung and I.-W. Chen, Nat. Nanotechnol., 6, 237 (2011). https://doi.org/10.1038/nnano.2011.21
  18. J. H. Yoon, J. H. Han, J. S. Jung, W. Jeon, G. H. Kim, S. J. Song, J. Y. Seok, K. J. Yoon, M. H. Lee and C. S. Hwang, Adv. Mater., 25, 1987 (2013). https://doi.org/10.1002/adma.201204572
  19. B. J. Choi, A. B. K. Chen, X. Yang and I.-W. Chen, Adv. Mater., 23, 3847 (2011).
  20. X. Yang, I. Tudosa, B. J. Choi, A. B. K. Chen and I. Chen, Nano Lett., 14, 5058 (2014). https://doi.org/10.1021/nl501710r
  21. A. B. K. Chen, B. J. Choi, X. Yang and I.-W. Chen, Adv. Func. Mater., 22, 546 (2012). https://doi.org/10.1002/adfm.201102208
  22. D. Lee and T. Tseng, J. Appl. Phys., 114117, (2012).
  23. B. J. Choi, A. C. Torrezan, K. J. Norris, F. Miao, J. P. Strachan, M.-X. Zhang, D. A. A. Ohlberg, N. P. Kobayashi, J. J. Yang and R. S. Williams, Nano Lett., 13, 3213 (2013). https://doi.org/10.1021/nl401283q
  24. X. Yang and I.-W. Chen, Sci. Rep., 2, 744 (2012). https://doi.org/10.1038/srep00744
  25. X. Yang, A. B. K. Chen, B. Joon Choi and I.-W. Chen, Appl. Phys. Lett., 102, 043502 (2013). https://doi.org/10.1063/1.4790158
  26. D. Ielmini, S. Lavizzari, D. Sharma and A. L. Lacaita, in IEDM Tech. Dig. (IEEE, 2007), pp. 939-942.
  27. G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan and R. S. Shenoy, IBM J. Res. Dev., 52, 449 (2008). https://doi.org/10.1147/rd.524.0449
  28. S. Raoux, W. Wenic and D. Ielmini, Chem. Rev., 110, 240 (2010). https://doi.org/10.1021/cr900040x