DOI QR코드

DOI QR Code

Synthesis of Nanosized SnS-TiO2 Photocatalysts with Excellent Degradation Effect of TBA under Visible Light Irradiation

  • Meng, Ze-Da (Jiangsu Key Laboratory of Environmental Functional Materials, College of Chemistry and Bioengineering, Suzhou University of Science and Technology) ;
  • Zhu, Lei (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Ullah, Kefayat (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Ye, Shu (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2015.05.19
  • Accepted : 2015.08.06
  • Published : 2015.09.27

Abstract

SnS-$TiO_2$ nanocomposites are synthesized using simple, cheap, and less toxic $SnCl_2$ as the tin (II) precursor. The prepared nanoparticles are characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Vis diffuse reflectance spectra (DRS). The XRD and TEM results indicate that the prepared product has SnS nanoparticles and a grain diameter of 30 nm. The DRS demonstrate that SnS-$TiO_2$ possesses the absorption profile across the entire visible light region. The generation of reactive oxygen species is detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It is found that the photocurrent density and photocatalytic effect increase with the modified SnS. Excellent catalytic degradation of Texbrite BA-L (TBA) solution is observed using the SnS-$TiO_2$ composites under visible light irradiation. It is proposed that both the strong visible light absorption and the multiple exciton excitations contribute to the high visible light photocatalytic activity.

References

  1. O. K. Dalrymple, E. Stefanakos, M. A. Trotz and D. Y. Goswami, Appl. Catal. B: Environ., 98, 27 (2010). https://doi.org/10.1016/j.apcatb.2010.05.001
  2. P. Xu, T. Xu, J. Lu, S. M. Gao, N. S. Hosmane, B. B. Huang, Y. Dai and Y. B. Wang, Energy Environ. Sci., 3, 1128 (2010). https://doi.org/10.1039/c001940m
  3. S. Bagwasi, B. Z. Tian, J. L. Zhang, and M. Nasir, Chem. Eng. J., 217, 108 (2013). https://doi.org/10.1016/j.cej.2012.11.080
  4. K. K. Akurati, A. Vital, J. P. Dellemann, K. Mitchalow and T. Graule, Appl. Catal. B, 79, 53 (2008). https://doi.org/10.1016/j.apcatb.2007.09.036
  5. X. Chen and S. S. Mao, Chem. Rev., 107, 2891 (2007). https://doi.org/10.1021/cr0500535
  6. C. Burda, Y. Lou, X. Chen, A. Samia, J. Stout and J. Gole, Nano Lett., 3, 1049 (2003). https://doi.org/10.1021/nl034332o
  7. O. K. Dalrymple, E. Stefanakos, M. A. Trotz and D. Y. Goswami, Appl. Catal. B: Environ., 98, 27 (2010). https://doi.org/10.1016/j.apcatb.2010.05.001
  8. S. Jothivel, R. Velmurugan, K. Selvam, B. Krishnakumar and M. Swaminathan, Sep. Purif. Technol., 77, 245 (2011). https://doi.org/10.1016/j.seppur.2010.12.014
  9. P. S. Tang, H. F. Chen, F. Caom G. X. Pan, K. Y. Wang, M. H. Xu and Y. H. Tong, Mater. Lett., 65, 450 (2011). https://doi.org/10.1016/j.matlet.2010.10.055
  10. Z. D. Meng, T. Ghosh, L. Zhu, J. G. Choi, C. Y. Park and W. C. Oh, J. Mater. Chem., 22, 16127(2012). https://doi.org/10.1039/c2jm32344c
  11. J. Wang, Y. W. Guo, B. Liu, X. D. Jin, L. J. Liu, R. Xu, Y. M. Kong, B. X. Wang, Ultrason. Sonochem. 18, 177 (2011). https://doi.org/10.1016/j.ultsonch.2010.05.002
  12. S. Y. Cheng, Y. Q. Chen, Y. J. He and G. N. Chen., Mater. Lett., 61, 1408 (2007). https://doi.org/10.1016/j.matlet.2006.07.067
  13. V. Ramaswamy, N. B. Jagtap, S. Vijayanand, D. S. Bhange and P. S. Awati, Mater. Res. Bull., 43, 1145 (2008). https://doi.org/10.1016/j.materresbull.2007.06.003
  14. X. W. Zhang, M. H. Zhou and L. C. Lei, Carbon, 43, 1700 (2005). https://doi.org/10.1016/j.carbon.2005.02.013
  15. R. Mariappan, T. Mahalingam and V. Ponnuswamy, Optik, 122, 2216 (2011). https://doi.org/10.1016/j.ijleo.2011.01.015
  16. H. L. Zhu, D. R. Yang, Y. J. Ji, H. Zhang and X. F. Shen, J. Mater. Sci., 40, 591 (2005). https://doi.org/10.1007/s10853-005-6293-x
  17. C. R. Sekhar, K. K. Malay and D. G. Dhruba, Thin Solid Films, 350, 72 (1999). https://doi.org/10.1016/S0040-6090(99)00276-X
  18. B. Ghosh, R. Roy, S. Chowdhruy, P. Banerjee and S. Das, Appl. Surf. Sci., 256, 4328 (2010). https://doi.org/10.1016/j.apsusc.2010.02.025
  19. Z. D. Meng, L. Zhu, J. G. Choi, M. L. Chen and W. C. Oh, J. Mater. Chem., 21, 7596 (2011). https://doi.org/10.1039/c1jm10301f
  20. M. D. Donohue and G. L. Aranovich, Fluid Phase Equilib., 158, 557 (1999).
  21. C. Yang, W. Wang, Z. Shan and F. Huang, J. Solid State Chem., 182, 807 (2009). https://doi.org/10.1016/j.jssc.2008.12.018
  22. Z. D. Meng, M. M. Peng, L. Zhu and W. C. Oh, Appl. Catal. B; Environ,, 113, 141 (2012).
  23. J. Ning, K. Men, G. Xiao, L. Wang, Q. Dai, B. Zou, B. Liu and G. Zou, Nanoscale, 2, 1699 (2010). https://doi.org/10.1039/c0nr00052c
  24. H. Liu, Y. Liu, Z. Wang and P. He, Nanotechnology, 21, 105707 (2010). https://doi.org/10.1088/0957-4484/21/10/105707
  25. B. S. Liu, X. J. Zhao, Q. N. Zhao, X. He and J. Y. Feng, J. Elec. Spec. Relat. Phenom., 148, 158 (2005). https://doi.org/10.1016/j.elspec.2005.05.003