DOI QR코드

DOI QR Code

Study on Aluminum Frame Surface Cleaning Process for Photomask Pellicle Fabrication

포토마스크 펠리클 제조를 위한 Aluminum Frame 표면 세정공정 연구

  • Kim, Hyun-Tae (Department of Bionano Technology, Hanyang University) ;
  • Kim, Hyang-Ran (Department of Bionano Technology, Hanyang University) ;
  • Kim, Min-Su (Department of Bionano Technology, Hanyang University) ;
  • Lee, Jun (Department of Bionano Technology, Hanyang University) ;
  • Jang, Sung-Hae (Department of Bionano Technology, Hanyang University) ;
  • Choi, In-Chan (Department of Bionano Technology, Hanyang University) ;
  • Park, Jin-Goo (Department of Bionano Technology, Hanyang University)
  • 김현태 (한양대학교 바이오나노학과) ;
  • 김향란 (한양대학교 바이오나노학과) ;
  • 김민수 (한양대학교 바이오나노학과) ;
  • 이준 (한양대학교 바이오나노학과) ;
  • 장성해 (한양대학교 바이오나노학과) ;
  • 최인찬 (한양대학교 바이오나노학과) ;
  • 박진구 (한양대학교 바이오나노학과)
  • Received : 2015.04.29
  • Accepted : 2015.08.06
  • Published : 2015.09.27

Abstract

Pellicle is defined as a thin transparent film stretched over an aluminum (Al) frame that is glued on one side of a photomask. As semiconductor devices are pursuing higher levels of integration and higher resolution patterns, the cleaning of the Al flame surface is becoming a critical step because the contaminants on the Al flame can cause lithography exposure defects on the wafers. In order to remove these contaminants from the Al frame, a highly concentrated nitric acid ($HNO_3$) solution is used. However, it is difficult to fully remove them, which results in an increase in the Al surface roughness. In this paper, the pellicle frame cleaning is investigated using various cleaning solutions. When the mixture of sulfuric acid ($H_2SO_4$), hydrofluoric acid (HF), hydrogen peroxide ($H_2O_2$), and deionized water with ultrasonic is used, a high cleaning efficiency is achieved without $HNO_3$. Thus, this cleaning process is suitable for Al frame cleaning and it can also reduce the use of chemicals.

Acknowledgement

Supported by : MOTIE(Ministry of Trade, Industry & Energy)

References

  1. R. C. Jaeger, Introduction to Microelectronic Fabrication, 5th ed., p.17-25, Prentice-Hall, Inc., USA (2002).
  2. S. T. Choo and S. K. Choi, KR Patent No. 10-0519463 (2005).
  3. A. de Frutos, M. A. Arenas, Y. Liu, P. Skeldon, G. E. Thompson and J. de. Damborenea, Surf. Coat. Technol., 202, 3797 (2008). https://doi.org/10.1016/j.surfcoat.2008.01.027
  4. K. J. H. Nelson, A. E. Hughes, R. J. Taylor, B. R. W. Hinton, L. Wilson and M. Henderson, Mater. Sci. Technol., 17, 1211 (2001). https://doi.org/10.1179/026708301101509287
  5. C. Dunbar, ASM Handbook, Volume 05 - Surface Engineering, p.335-338, ASM International Handbook Committee, ASM Handbook, USA (1994).
  6. S. T. Choo and S. K. Choi, Clean Technol., 9, 57 (2003).
  7. J. R. Davis, Corrosion of Aluminum and Aluminum Alloys, p.251-259, ASM International, USA (1999).
  8. T. J. O'Keefe and P. Yu, Encyclopedia of Materials: Science and Technology, p.7774-7781, Elsevier, Netherlands (2001).
  9. R. W. Revie, Uhlig's Corrosion Handbook, 2nd ed., John Wiley & Sons Inc., USA (2000).
  10. V. Fournier, P. Marcus and I. Olefjord, Surf. Interface Anal., 34, 494 (2002). https://doi.org/10.1002/sia.1346