Effects of Yb3+/Er3+ Ratios on the Down- and Up-Conversion Luminescence of YNbO4:Yb3+/Er3+

Yb3+/Er3+ 비가 YNbO4:Yb3+/Er3+의 하향 및 상향전환 발광 특성에 미치는 영향

  • Park, Jung Hye (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Ahn, Wonsik (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Lee, Eun Young (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, Young Jin (Department of Advanced Materials Engineering, Kyonggi University)
  • 박정혜 (경기대학교 공과대학 신소재공학과) ;
  • 안원식 (경기대학교 공과대학 신소재공학과) ;
  • 이은영 (경기대학교 공과대학 신소재공학과) ;
  • 김영진 (경기대학교 공과대학 신소재공학과)
  • Received : 2015.05.20
  • Accepted : 2015.08.21
  • Published : 2015.09.27


$YNbO_4:Yb^{3+}/Er^{3+}$ is synthesized using a solid-state reaction process with a LiCl flux. The effects of the Er/(Yb+Er) ratios ($R_{Er}$) on the up-conversion (UC) and down-conversion (DC) spectra are investigated. The XRD data confirm that the $Yb^{3+}$ and $Er^{3+}$ ions are fully substituted for the $Y^{3+}$ sites. The UC emission spectra activated by 980 nm consists of green and red emission bands, which originate from the $Er^{3+}$ ions through an energy transfer (ET) process from $Yb^{3+}$ to $Er^{3+}$. The UC emission intensity depends on the $R_{Er}$ value, and the findings demonstrate that $R_{Er}{\leq}0.14$ is suitable for an effective UC process. The DC emission spectra under 269 nm radiation of the synthesized powders exhibits not only a strong blue emission assigned to the $[NbO_4]^{3-}$ niobates, but also green peaks that originate from the $Er^{3+}$ ions through an ET process between $[NbO_4]^{3-}$ and $Er^{3+}$.


  1. E. Y. Lee and Y. J. Kim, Electrochem. Solid-State Lett., 13, J110 (2010).
  2. E. Y. Lee and Y. J. Kim, Thin Solid Films, 518, e72 (2010).
  3. E. Y. Lee, M. Nazarov, and Y. J. Kim, J. Eletrochem. Soc., 157, J102 (2010).
  4. M. Nazarov, Y. J. Kim, E. Y. Lee, K.-I. Min, M. S. Jeong, S. W. Lee and D. Y. Noh, J. Appl. Phys., 107, 103104 (2010).
  5. X. Y. Huang, J. X. Wang, D. C. Yu, S. Ye, Q. Y. Zhang and X. W. Sun, J. Appl. Phys., 109, 113526 (2011).
  6. X. Xiao, B. Yan and Y. Song, Cryst. Growth Des., 9, 136 (2009).
  7. K. S. Sohn, W. Zeon, H. Chang, S. K. Lee and H. D. Park, Chem. Mat., 14, 2140 (2002).
  8. A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana and S. Jacquart, J. Phys. Chem. C, 115, 4217 (2011).
  9. E. Y. Lee and Y. J. Kim, ECS Meeting Abstracts, MA2009-02, #3213 (2009).
  10. A. K. Singh, S. K. Singh, B. K. Gupta, R. Prakash and S. B. Rai, Dalton Trans., 42, 1065 (2013).
  11. G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, Adv. Mater., 24, 1226 (2012).
  12. J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, and S. Xu, J. Mater. Chem., 21, 2632 (2011).
  13. F. van de Gijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, Nat. Biotechnol., 19, 273 (2001).
  14. Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, Nanotechnology, 23, 025402 (2012).
  15. V. K. Tikhomirov, V. D. Rodríguez, J. Méndez-Ramos, J. del-Castillo, D. Kirilenko, G. VanTendeloo, and V. V. Moshchalkov, Sol. Energy Mat. Sol. Cells, 100, 209 (2012).
  16. J. M. Jehng and I. E. Wachs, Chem. Mat., 3, 100 (1991).
  17. S. H. Shin, D. Y. Jeon, and K. S. Suh, J. Appl. Phys., 90, 5986 (2001).
  18. S. K. Lee, H. Chang, C. -H. Han, H. -J. Kim, H. G. Jang, and H. D. Park, J. Solid State Chem., 156, 267 (2001).
  19. D. A. Grisafe and C. W. Fritsch, J. Solid State Chem., 17, 313 (1976).
  20. F. Auzel, Chem. Rev., 104, 139 (2004).