DOI QR코드

DOI QR Code

Upconversion Photoluminescence Properties of PbMoO4:Er3+/Yb3+ Phosphors Synthesized by Microwave Sol-Gel Method

  • Lim, Chang Sung (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2015.05.04
  • Accepted : 2015.08.24
  • Published : 2015.09.27

Abstract

$Pb_{1-x}MoO_4:Er^{3+}/Yb^{3+}$ phosphors with various doping concentrations of $Er^{3+}$ and $Yb^{3+}$ ($x=Er^{3+}+Yb^{3+}$, $Er^{3+}=0.05$, 0.1, 0.2, and $Yb^{3+}=0.2$, 0.45) are successfully synthesized using a microwave sol-gel method, and the up-conversion photoluminescence properties are investigated. Well-crystallized particles, which are formed after heat treatment at $900^{\circ}C$ for 16 h, exhibit a fine and homogeneous morphology with particle sizes of $2-5{\mu}m$. Under excitation at 980 nm, the $Pb_{0.7}MoO_4:Er_{0.1}Yb_{0.2}$ and $Pb_{0.5}MoO_4:Er_{0.05}Yb_{0.45}$ particles exhibit a strong 525 nm emission band, a weak 550 nm emission band in the green region, and a very weak 655 nm emission band in the red region. The Raman spectra of the doped particles indicate the presence of strong peaks at higher and lower frequencies induced by the disordered structures of $Pb_{1-x}MoO_4$ through the incorporation of the $Er^{3+}$ and $Yb^{3+}$ ions into the crystal lattice, which results in the unit cell shrinkage accompanying the new phase formation of the $MoO_{4-x}$ group.

References

  1. M.Wang, G. Abbineni, A. Clevenger, C. Mao and S. Xu, Nanomed., 7, 710 (2011). https://doi.org/10.1016/j.nano.2011.02.013
  2. A. Shalav, B.S. Richards and M.A. Green, Sol. Energy Mater. Sol. Cells, 91, 829 (2007). https://doi.org/10.1016/j.solmat.2007.02.007
  3. M. Lin, Y. Zho, S. Wang, M, Liu, Z. Duan, Y. Chen, F. Li, F. Xu and T. Lu, Biol. Adv., 30, 1551 (2012).
  4. J. Liao, D. Zhou, B. Yang, R. liu, Q. Zhang and Q. Zhou, J. Lumin., 134, 533 (2013). https://doi.org/10.1016/j.jlumin.2012.07.033
  5. J. Sun, J. Xian and H. Du, J. Phys. Chem. Solids, 72, 207 (2011). https://doi.org/10.1016/j.jpcs.2010.12.013
  6. C. Guo, H. K. Yang and J.H. Jeong, J. Lumin., 130, 1390 (2010). https://doi.org/10.1016/j.jlumin.2010.02.052
  7. J. Sun, J. Xian and H. Du, J. Phys. Chem. Solids, 72, 207 (2011). https://doi.org/10.1016/j.jpcs.2010.12.013
  8. V.K. Komarala, Y. Wang and M. Xiao, Chem. Phys. Lett., 490, 189 (2010). https://doi.org/10.1016/j.cplett.2010.03.041
  9. J. Sun, J. Xian, Z. Xia and H. Du, J. Rare Earths, 28, 219 (2010). https://doi.org/10.1016/S1002-0721(10)60301-8
  10. H. Du, Y. Lan, Z. Xia and J. Sun, Mater. Res. Bull., 44, 1660 (2009). https://doi.org/10.1016/j.materresbull.2009.04.009
  11. L.X. Pang, H. Liu, D. Zhou, G.B. Sun, W.B. Qin and W.G. Liu, Mater. Lett., 72, 128 (2012). https://doi.org/10.1016/j.matlet.2011.12.084
  12. M. Haque and D.K. Kim, Mater. Lett., 63, 793 (2009). https://doi.org/10.1016/j.matlet.2009.01.018
  13. V.V. Atuchin, O.D. Chimitova, S.V. Adichtchev, J.G. Gazarov, T.A. Gavrilova, M.S. Molokeev, N.S. Surovtsev and Zh.G. Bazarova, Mater. Lett., 106, 26 (2013). https://doi.org/10.1016/j.matlet.2013.04.039
  14. L. Qin, Y. Huang, T, Tsuboi and H.J. Seo, Mater. Res. Bull., 47, 4498 (2012). https://doi.org/10.1016/j.materresbull.2012.10.004
  15. Y.L. Yang, X.M. Li, W.L. Feng, W.L. Li and C.Y. Tao, J. Alloy Compd., 505, 239 (2010). https://doi.org/10.1016/j.jallcom.2010.06.037
  16. Y. Tian, B. Chen, B. Tian, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang and Q. Meng, J. Alloy Compd., 509, 6096 (2011). https://doi.org/10.1016/j.jallcom.2011.03.034
  17. Y. Huang, L. Zhou and Z. Tang, Opt. Mater., 33, 777 (2011). https://doi.org/10.1016/j.optmat.2010.12.015
  18. Y. Tian, B. Chen, B. Tian, J. Sun, X. Li, J. Zhang, L. Cheng, H. Zhong, H. Zhong, Q. Meng and R. Hua, Physica B, 407, 2556 (2012). https://doi.org/10.1016/j.physb.2012.03.066
  19. Z. Wang, H. Liang, L. Zhou, J. Wang, M. Gong and Q. Su, J. Lumin., 128, 147 (2008). https://doi.org/10.1016/j.jlumin.2007.07.001
  20. Q. Chen, L. Qin, Z. Feng, R. Ge, X. Zhao and H. Xu, J. Rare Earths, 29, 843 (2011). https://doi.org/10.1016/S1002-0721(10)60553-4
  21. X. Shen, L. Li, F. He, X. Meng and F. Sing, Mater. Chem. Phys., 132, 471 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.055
  22. J. Bi, L. Wu, Y. Zhang, Z. Li, J. Li, X. Fu, Appl. Catal. B, 91, 135 (2009). https://doi.org/10.1016/j.apcatb.2009.05.016
  23. S. Das, A.K. Mukhopadhyay, S. Datta and D. Basu, Bull. Mater. Sci., 32, 1 (2009). https://doi.org/10.1007/s12034-009-0001-4
  24. Y. Keereeta, T. Thongtem and S. Thongtom, Curr. Appl. Phys., 12, S139 (2012). https://doi.org/10.1016/j.cap.2012.02.045
  25. C.S. Lim, Mater. Res. Bull., 60, 537 (2014). https://doi.org/10.1016/j.materresbull.2014.08.056
  26. C.S. Lim, Infrared Phys. Technol., 67, 371 (2014). https://doi.org/10.1016/j.infrared.2014.08.018
  27. J. Zhang, X. Wang, X, Zhang, X. Zhao, X. Liu and L. Peng, Inog. Chem. Commun., 14, 1723 (2011). https://doi.org/10.1016/j.inoche.2011.07.015
  28. W. Lu, L. Cheng, J. Sun, H. Zhong, X. Li, Y. Tian, J. Wan, Y. Zheng, L. Huang, T. Yu, H. Yu and B. Chen, Physica B, 405, 3284 (2010). https://doi.org/10.1016/j.physb.2010.04.061
  29. B. Li, B. Joshi, Y.K. Kshetri, R. Adhikari, R.N. Gracia and S.W. Lee, Opt. Mater., 39, 239 (2015). https://doi.org/10.1016/j.optmat.2014.11.034
  30. W. Lu, L. Cheng, J. Sun, H. Zhong, X. Li, Y. Tian, J. Wan, Y. Zheng, L. Huang, T. Yu, H. Yu and B. Chen, Phyica B, 405, 3284 (2010). https://doi.org/10.1016/j.physb.2010.04.061
  31. J.H. Chung, J.I. Lee, S.L. Ryu and J.H. Ryu, Ceram. Int., 39, S369-S372 (2013). https://doi.org/10.1016/j.ceramint.2012.10.096
  32. J. Sun, B. Sue and H. Du, Infrared Phys. Technol., 60, 10 (2013). https://doi.org/10.1016/j.infrared.2013.03.004
  33. Q. Sun, X. Chen, Z. Liu, F. Wang, Z. Jiang and C. Wang, J. Alloys Compd,. 509, 5336 (2012).