Facile Synthesis of Hydroxyapatite by Hydrothermal and Solvent Combustion Methods

  • Bramhe, Sachin N (Department of Material Science and Engineering, Pai Chai University) ;
  • Lee, Hyun Chul (Department of Material Science and Engineering, Pai Chai University) ;
  • Chu, Min Cheol (Center for New Functional Materials Metrology, Korea Research Institute of Standards and Science) ;
  • Ryu, Jae-Kyung (Department of Dental Technology and Science, Shinhan University) ;
  • Balakrishnan, Avinash (Nanosolar Division, Amrita Centre for Nanosciences) ;
  • Kim, Taik Nam (Department of Material Science and Engineering, Pai Chai University)
  • Received : 2015.07.01
  • Accepted : 2015.08.24
  • Published : 2015.09.27


Hydroxyapatite (HA), which is an important calcium phosphate mineral, has been applied in orthopedics, dentistry, and many other fields depending upon its morphology. HA can be synthesized with different morphologies through controlling the synthesis method and several parameters. Here, we synthesize various morphologies of HA using two simple methods: hydrothermal combustion and solution combustion. The phase purity of the synthesized HA is confirmed using X-ray diffractometry. It demonstrates that pure phased hydroxyapatite can be synthesized using both methods. The morphology of the synthesized powder is examined using scanning electron microscopy. The effects of pH and temperature on the final powder are also investigated. At $140^{\circ}C$, using the hydrothermal method, nano-micro HA rods with a hexagonal crystal structure can be synthesized, whereas using solution combustion method at $600^{\circ}C$, a dense cubic morphology can be synthesized, which exhibits monoclinic crystal structures.


Supported by : Pai Chai University


  1. R. R. Rao, H. N. Roopa and T. S. Kannan, J. Mater. Sci.:Mater. Med., 8, 511 (1997).
  2. M. Itokazu, W. Yang, T. Aoki, A. Ohara and N. Kato, Biomaterials, 19, 817 (1988).
  3. C. Zhang, S. Shihui and Z. Yang, Sep. Purif. Technol., 143, 88 (2015).
  4. H. Liu, G. W. Xu, Y. F. Wang, H. S. Zhao, S. Xiong, Y. Wu, B. C. Heng, C. R. An, G. H. Zhu and D. H. Xie, Biomaterials, 49, 103 (2015).
  5. R. Z. LeGeros and J. Legeros, Hydroxyapatites, in: L. L. Hench, J. Wilson, An Introduction to Bioceramics, World Scientific, 1993, p. 139.
  6. W. Ye and X. X. Wang, Mater. Lett., 61, 4062 (2007).
  7. S. K. Swain and D. Sarkar, Ceram. Int., 37, 2927 (2011).
  8. M. P. Ferraz, F. J. Monteiro and C. M. Manuel, J. Appl. Biomater. Biom., 2, 74 (2004).
  9. H. H. K. Xu and C. G. Simon, J. Orthop. Res., 22, 535 (2004).
  10. G. Balasundaram, M. Sato and T. J. Webster, Biomaterials, 27, 2798 (2006).
  11. K. Inoue, K. Sassa, Y. Yokogawa, Y. Sakka, M. Okido and S. Asai, Mater. Trans., 44, 1133 (2003).
  12. M. Tanahashi, K. Kamiya, T. Suzuki and H. Nashu, J. Mater. Sci. Mater. Med., 3, 48 (1992).
  13. H. C. Park, D. J. Baek, Y. M. Park and S. Y. Yoon; J. Mater. Sci., 39, 2531 (2004).
  14. M. R. Saeri, A. Afshar, M. Ghorbani, N. Ehsani and C. C. Sorell, Mater. Lett., 57, 4064 (2003).
  15. W. Suchanek and M. Yoshimura, J. Mater. Res., 13, 94 (1998).
  16. J. C. Elliott, P. E. Mackie and R. A. Young, Science, 180, 1055 (1973).
  17. H. Zhang, Y. Wang, Y. Yan and S. Li, Ceram. Int., 29, 413 (2003).
  18. Y. M. Park, S. C. Ryu, S. Y. Yoon, R. Stevens and H. C. Park, Mater. Chem. Phys., 109, 440 (2008).
  19. C. Qiu, X. Xiao and R. Liu, Ceram. Int., 34, 1747 (2008).
  20. K. P. Sanosh, A. Balakrishnan, M. C. Chu, Y. J. Lee, T. N. Kim and S. J. Cho, Particuology, 7, 466 (2009).
  21. B. Viswanath and N. Ravishankar, Biomaterials, 29, 4855 (2008).
  22. H. Li, W. Huang, Y. Zhang and M. Zhong, Mater. Sci. Eng. C, 27, 756 (2007).
  23. K. Lin, J. Chang, Y. Zhu, W. Wu, G. Cheng and Y. Zheng, Cryst. Growth Des., 9, 177 (2009).
  24. I. S. Neira, Y. V. Kolen’ko, O. I. Lebedev, G. V. Tendeloo, H. S. Gupta, F. Guitian and M. Yoshimura, Cryst. Growth Des., 9, 466 (2009).
  25. T. Kobayashi, S. Ono, S. Hirakura, Y. Oaki and H. Imai, Cryst. Eng. Comm., 14, 1143 (2012).
  26. K. P. Sanosh, M. C. Chu, A. Balakrishnan, T. N. Kim and S. J. Cho, Mat. Lett., 16, 43 (2009).
  27. M. Kurkcu, M. E. Benlidayi, B. Cam and Y. Sertdemir, J. Oral Implantol., 38, 519 (2012).
  28. R. Murugan and K. P. Rao, Trends Biomater. Artif. Organs, 16, 43 (2002).
  29. K. S. Vecchio, X. Zhang, J. B. Massie, M. Wang and C. W. Kim, Acta Biomater., 6, 910 (2007).
  30. X. Zhang and K. S. Vecchio, Mat. Sci. Eng. C, 26, 1445 (2006).
  31. S. Bramhe, T. N. Kim, A. Balakrishnan and M. C. Chu, Mat. Lett., 135, 195 (2014).
  32. E. Lester, S. V. Y. Tang, A. Khlobystov, V. L. Rose, L. Buttery and C. J. Roberts, Cryst. Eng. Comm., 15, 3256 (2013).
  33. S. Bramhe, J. K. Ryu, M. C. Chu, A. Balakrishnan and T. N. Kim, Korean J. Mater. Res., 24, 700 (2014).