DOI QR코드

DOI QR Code

Facile Synthesis of Hydroxyapatite by Hydrothermal and Solvent Combustion Methods

  • Bramhe, Sachin N (Department of Material Science and Engineering, Pai Chai University) ;
  • Lee, Hyun Chul (Department of Material Science and Engineering, Pai Chai University) ;
  • Chu, Min Cheol (Center for New Functional Materials Metrology, Korea Research Institute of Standards and Science) ;
  • Ryu, Jae-Kyung (Department of Dental Technology and Science, Shinhan University) ;
  • Balakrishnan, Avinash (Nanosolar Division, Amrita Centre for Nanosciences) ;
  • Kim, Taik Nam (Department of Material Science and Engineering, Pai Chai University)
  • Received : 2015.07.01
  • Accepted : 2015.08.24
  • Published : 2015.09.27

Abstract

Hydroxyapatite (HA), which is an important calcium phosphate mineral, has been applied in orthopedics, dentistry, and many other fields depending upon its morphology. HA can be synthesized with different morphologies through controlling the synthesis method and several parameters. Here, we synthesize various morphologies of HA using two simple methods: hydrothermal combustion and solution combustion. The phase purity of the synthesized HA is confirmed using X-ray diffractometry. It demonstrates that pure phased hydroxyapatite can be synthesized using both methods. The morphology of the synthesized powder is examined using scanning electron microscopy. The effects of pH and temperature on the final powder are also investigated. At $140^{\circ}C$, using the hydrothermal method, nano-micro HA rods with a hexagonal crystal structure can be synthesized, whereas using solution combustion method at $600^{\circ}C$, a dense cubic morphology can be synthesized, which exhibits monoclinic crystal structures.

Acknowledgement

Supported by : Pai Chai University

References

  1. R. R. Rao, H. N. Roopa and T. S. Kannan, J. Mater. Sci.:Mater. Med., 8, 511 (1997). https://doi.org/10.1023/A:1018586412270
  2. M. Itokazu, W. Yang, T. Aoki, A. Ohara and N. Kato, Biomaterials, 19, 817 (1988).
  3. C. Zhang, S. Shihui and Z. Yang, Sep. Purif. Technol., 143, 88 (2015). https://doi.org/10.1016/j.seppur.2015.01.030
  4. H. Liu, G. W. Xu, Y. F. Wang, H. S. Zhao, S. Xiong, Y. Wu, B. C. Heng, C. R. An, G. H. Zhu and D. H. Xie, Biomaterials, 49, 103 (2015). https://doi.org/10.1016/j.biomaterials.2015.01.017
  5. R. Z. LeGeros and J. Legeros, Hydroxyapatites, in: L. L. Hench, J. Wilson, An Introduction to Bioceramics, World Scientific, 1993, p. 139.
  6. W. Ye and X. X. Wang, Mater. Lett., 61, 4062 (2007). https://doi.org/10.1016/j.matlet.2007.01.040
  7. S. K. Swain and D. Sarkar, Ceram. Int., 37, 2927 (2011). https://doi.org/10.1016/j.ceramint.2011.03.077
  8. M. P. Ferraz, F. J. Monteiro and C. M. Manuel, J. Appl. Biomater. Biom., 2, 74 (2004).
  9. H. H. K. Xu and C. G. Simon, J. Orthop. Res., 22, 535 (2004). https://doi.org/10.1016/j.orthres.2003.09.010
  10. G. Balasundaram, M. Sato and T. J. Webster, Biomaterials, 27, 2798 (2006). https://doi.org/10.1016/j.biomaterials.2005.12.008
  11. K. Inoue, K. Sassa, Y. Yokogawa, Y. Sakka, M. Okido and S. Asai, Mater. Trans., 44, 1133 (2003). https://doi.org/10.2320/matertrans.44.1133
  12. M. Tanahashi, K. Kamiya, T. Suzuki and H. Nashu, J. Mater. Sci. Mater. Med., 3, 48 (1992).
  13. H. C. Park, D. J. Baek, Y. M. Park and S. Y. Yoon; J. Mater. Sci., 39, 2531 (2004). https://doi.org/10.1023/B:JMSC.0000020021.82216.6b
  14. M. R. Saeri, A. Afshar, M. Ghorbani, N. Ehsani and C. C. Sorell, Mater. Lett., 57, 4064 (2003). https://doi.org/10.1016/S0167-577X(03)00266-0
  15. W. Suchanek and M. Yoshimura, J. Mater. Res., 13, 94 (1998). https://doi.org/10.1557/JMR.1998.0015
  16. J. C. Elliott, P. E. Mackie and R. A. Young, Science, 180, 1055 (1973). https://doi.org/10.1126/science.180.4090.1055
  17. H. Zhang, Y. Wang, Y. Yan and S. Li, Ceram. Int., 29, 413 (2003). https://doi.org/10.1016/S0272-8842(02)00153-0
  18. Y. M. Park, S. C. Ryu, S. Y. Yoon, R. Stevens and H. C. Park, Mater. Chem. Phys., 109, 440 (2008). https://doi.org/10.1016/j.matchemphys.2007.12.013
  19. C. Qiu, X. Xiao and R. Liu, Ceram. Int., 34, 1747 (2008). https://doi.org/10.1016/j.ceramint.2007.06.001
  20. K. P. Sanosh, A. Balakrishnan, M. C. Chu, Y. J. Lee, T. N. Kim and S. J. Cho, Particuology, 7, 466 (2009). https://doi.org/10.1016/j.partic.2009.06.008
  21. B. Viswanath and N. Ravishankar, Biomaterials, 29, 4855 (2008). https://doi.org/10.1016/j.biomaterials.2008.09.001
  22. H. Li, W. Huang, Y. Zhang and M. Zhong, Mater. Sci. Eng. C, 27, 756 (2007). https://doi.org/10.1016/j.msec.2006.08.002
  23. K. Lin, J. Chang, Y. Zhu, W. Wu, G. Cheng and Y. Zheng, Cryst. Growth Des., 9, 177 (2009). https://doi.org/10.1021/cg800129u
  24. I. S. Neira, Y. V. Kolen’ko, O. I. Lebedev, G. V. Tendeloo, H. S. Gupta, F. Guitian and M. Yoshimura, Cryst. Growth Des., 9, 466 (2009). https://doi.org/10.1021/cg800738a
  25. T. Kobayashi, S. Ono, S. Hirakura, Y. Oaki and H. Imai, Cryst. Eng. Comm., 14, 1143 (2012). https://doi.org/10.1039/C1CE06114C
  26. K. P. Sanosh, M. C. Chu, A. Balakrishnan, T. N. Kim and S. J. Cho, Mat. Lett., 16, 43 (2009).
  27. M. Kurkcu, M. E. Benlidayi, B. Cam and Y. Sertdemir, J. Oral Implantol., 38, 519 (2012). https://doi.org/10.1563/AAID-JOI-D-11-00061
  28. R. Murugan and K. P. Rao, Trends Biomater. Artif. Organs, 16, 43 (2002).
  29. K. S. Vecchio, X. Zhang, J. B. Massie, M. Wang and C. W. Kim, Acta Biomater., 6, 910 (2007).
  30. X. Zhang and K. S. Vecchio, Mat. Sci. Eng. C, 26, 1445 (2006). https://doi.org/10.1016/j.msec.2005.08.007
  31. S. Bramhe, T. N. Kim, A. Balakrishnan and M. C. Chu, Mat. Lett., 135, 195 (2014). https://doi.org/10.1016/j.matlet.2014.07.137
  32. E. Lester, S. V. Y. Tang, A. Khlobystov, V. L. Rose, L. Buttery and C. J. Roberts, Cryst. Eng. Comm., 15, 3256 (2013). https://doi.org/10.1039/c3ce26798a
  33. S. Bramhe, J. K. Ryu, M. C. Chu, A. Balakrishnan and T. N. Kim, Korean J. Mater. Res., 24, 700 (2014). https://doi.org/10.3740/MRSK.2014.24.12.700