DOI QR코드

DOI QR Code

Bayesian Network (BN)를 활용한 수문학적 댐 위험도 해석 기법 개발

김진영;김진국;최병한;권현한
Kim, Jin-Young;Kim, Jin-Guk;Choi, Byoung-Han;Kwon, Hyun-Han

  • 투고 : 2015.07.28
  • 심사 : 2015.08.11
  • 발행 : 2015.10.31

초록

댐 위험도 해석시 수문학적 변량(강수, 유출 및 수위)들의 상호관계를 고려한 체계적인 분석과정이 요구된다. 그러나 기존 댐 위험도 해석 연구에서는 변량간의 체계적인 관계 평가를 수행하는데 있어서 한계점을 나타내고 있다. 이러한 점에서, 본 연구에서는 수리 수문학적 변량간의 관계를 효과적으로 평가하고자 Bayesian Network 기반의 댐 위험도 해석 기법을 개발하였다. 실제 댐에 대해서 제안된 모형을 적용한 결과 파괴인자간의 상호관계 규명 및 불확실성을 평가하는데 있어서 기존 연구보다 쉽게 가장 큰 파괴인자를 파악할 수 있는 장점이 있었다. 이와 더불어 다양한 시나리오에 따른 댐의 안정성을 파괴확률 및 예상피해의 함수인 위험도로 평가할 수 있도록 하였다. 즉, 기존 댐 위험도 기법으로 수행한 결과에서는 월류 확률이 도출 되지 않았지만, Copula 함수를 도입하여 댐 초기수위를 고려한 결과 댐 월류 확률이 발생하였으며, 피해결과 역시 크게 증가하고 있는 것을 확인할 수 있었다. 이러한 결과를 기반으로 향후 댐의 보수보강 등의 우선순위 결정을 위한 도구로서 활용이 가능할 것으로 판단된다.

키워드

댐 위험도 해석;불확실성;상호연관성

참고문헌

  1. Lee, J.Y., Lee, J.S., and Kim, K.Y. (2014). "Prediction of Loss of Life in Downstream due to Dam Break Flood." Journal of Korea Water Resources Association, Vol. 47, No. 10, pp. 879-889. https://doi.org/10.3741/JKWRA.2014.47.10.879
  2. Na, B.K., Kim, J.Y., Kwon, H.H., and Lim, J.Y. (2014). "Improvement of Hydrologic Dam Risk Analysis Model Considering Uncertainty of Hydrologic Analysis Process." Journal of Korea Water Resources Association, KWRA, Vol. 47, No. 10, pp. 853-865. https://doi.org/10.3741/JKWRA.2014.47.10.853
  3. Nelsen, R.B. (2006). "An Introduction to copulas." Springer, New York, pp. 109-155.
  4. Pearl, J. (1988). "Probabilistic Reasoning in Intelligence Systems." Morgan Kaufmann, San Mateo, CA, 1988
  5. Prendergast, J.D. (1979). "Probabilistic Concept for Gravity Dam Analysis." Special Rep, M-265, Construction Engineering Research Lab, U.S. Army Corps of Engineers, Champaign.
  6. Sin, C.S., Ryu, G.J., Jo, K.S., and Bae, B.W. (2007). "Improvement of Hydrological Safety Evaluation Gideline for Existing Dams." Journal of Korea Water Resources Association, KWRA, Vol. 40, No. 10, pp. 44-52.
  7. Bowles, D.S. (1988). "Verde River Risk Assessment: an Interim Solution Study." paper presented at the 8th annual USCOLD Meeting, Phoenix, AZ, January.
  8. Digest DG471 (2002). "Low-rise building foundations on soft ground, Building Research Establishment."
  9. Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004). Bayesian Data Analysis. CHAPMAN&HALL/CRC.
  10. Haimes, Y.Y. (1988). "Alternatives to the precommensuration of costs, benefits, risk. and time." Journal of Water Resources Planning and management, ASCE, New York.
  11. Sklar, K. (1959). "Fontions de reprartition a n dimensions et leurs marge." Publ. Inst. Statis. Univ. Paris 8, pp. 11.
  12. Srivastava, A. (2008). "Generalized event tree algorithm and software for dam safety risk analysis." Utah State University.
  13. Thompson, K.D., Stedinger, J.R., and Heath, D.C. (1997). "Evaluation and presentation of dam failure and flood risks." Journal of Water Resources Planning and Management, Vol. 123. No. 4, pp. 216-227. https://doi.org/10.1061/(ASCE)0733-9496(1997)123:4(216)
  14. Hsu, Y.C., Tung, Y.K., and Kuo, J.T. (2011). "Evaluation of dam overtopping probability induced by flood and wind." Stochastic Environmental Research and Risk Assessment, Vol. 25, No. 1, pp. 35-49. https://doi.org/10.1007/s00477-010-0435-7
  15. Jan C. Grygier, and Jery R. Stedinger (1985). "Algorithms for Optimizing Hydropower System Operation." Journal ofWater Resources Research, Vol. 21, No. 1, pp. 1-10. https://doi.org/10.1029/WR021i001p00001
  16. Jensen, J. (2001). "Genetic Evaluation of Dairy Cattle Using Test-Day Models." Journal of Dairy Science, Vol. 84, No. 12, pp. 2803-2812. https://doi.org/10.3168/jds.S0022-0302(01)74736-4
  17. Karlsson, P., and Haimes, Y. (1989). "Risk Assessment of Extreme Events: Application." J. Water Resour. Plann. Manage., Vol. 115, No. 3, pp. 299-320. https://doi.org/10.1061/(ASCE)0733-9496(1989)115:3(299)
  18. Kreuzer, H., and Bury, K. (1984). "A probability based evaluation of the safety and risk of existing dams, Proceedings of the International Conference on Safety of Dams." Coimbra, April 23-28, Edited by J. Laginha Serafim, University of Coimbra, Portugal.
  19. Kuo, J.T., Hsu, Y.C., Tung, Y.K., Yeh, K.C., and Wu, J.D. (2008). "Dam overtopping risk assessment considering inspection program." Stochastic Environmental Research and Risk Assessment, Vol. 22, No. 3, pp. 303-313. https://doi.org/10.1007/s00477-007-0116-3
  20. Kwon, H.H., and Moon, Y.I. (2006). "Improvement of Overtopping Risk Evaluations Using Probabilistic Concepts for Existing Dams, Stochastic Environmental Research and Risk Assessment." Springer-Verlag, Vol. 20, No. 4, pp. 223-237. https://doi.org/10.1007/s00477-005-0017-2
  21. Kwon, H.H., Moon, Y.I., and Khalil, A.F. (2007). "Nonparametric Monte Carlo Simulation for Flood Frequency Curve Derivation: An Application to a KOREAN Watershed." Journal of the AmericanWater Resources Association, Vol. 43, No. 5, pp. 1316-1328. https://doi.org/10.1111/j.1752-1688.2007.00115.x
  22. Kwon, H.-H., Kim, J.-G., Lee, J.-S., and Na, B.-K. (2012). "Uncertainty Assessment of Single Event Rainfall-Runoff Model Using Bayesian Model." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 5, pp. 505-516. https://doi.org/10.3741/JKWRA.2012.45.5.505

피인용 문헌

  1. A development of downscaling scheme for sub-daily extreme precipitation using conditional copula model vol.49, pp.10, 2016, https://doi.org/10.3741/JKWRA.2015.48.10.781
  2. A development of trivariate drought frequency analysis approach using copula function vol.49, pp.10, 2016, https://doi.org/10.3741/JKWRA.2015.48.10.781

과제정보

연구 과제 주관 기관 : 국민안전처