Determination of the Ground Station Locations for both Dual-Site Ranging and Site-Diversity at Q/V-band Satellite Communication for an Intersatellite System Scenario

Yilmaz, Umit C.;Cavdar, Ismail H.

  • Received : 2015.02.06
  • Accepted : 2015.09.15
  • Published : 2015.09.30


Generally, Low Earth Orbit (LEO) satellites are used to collect image or video from earth's surface. The collected data are stored on-board and/or transmitted to the main ground station directly or via polar ground station using terrestrial line. Today, an intersatellite link between a LEO and a GEO satellite allows transmission of the collected data to the main ground station through the GEO satellite. In this study, an approach for a continuous communication starting from LEO through GEO to ground station is proposed by determining the optimum ground station locations. In doing so, diverse ground stations help to determine the GEO orbit as well. Cross-correlation of the long term daily rainfall averages are multiplied with the logarithmic correlation of the sites to calculate the joint correlation of the diverse ground station locations. The minimum values of this joint correlation yield the optimum locations of the ground stations for Q/V-band communication and satellite control operations. Results for several case studies are listed.


site-diversity;Q/V band;satellite communication;turnaround ranging


  1. De Carlo, P. M., Roberto, L., Marano, G. and De Luca, G. F., "Intersatellite link for earth observation satellites constellation", SPACEOPS, Roma, Italy, 2006, pp. 1-12. DOI: 10.2514/6.2006-5811.
  2. Baister, G.C. and Gatenby, P.V., "Why optical communication links are needed for future satellite constellations", What's New in Satellite Communications?, lEE Colloquium, 1996. DOl: 10.1049/ic:19960537.
  3. Tolker-Nielsen, T. and Oppenhauser G., "In-orbit test result of an operational intersatellite link between Artemis and SPOT 4", Free-Space Laser Communications Technologies XIV, San jose, CA, Vol.4635, 2002, pp. 1-15. DOI: 10.1117/12.464105.
  4. Wilson, K. E., Kovalik, J. M., Biswas, A., Wright, M. W., Roberts, W. T., Takayama, Y. and Yamakawa, S., "Preliminary results of the OCTL to OICETS Optical Link Experiment (OTOOLE)", SPIE Free-Space Laser Communication Technologies Proc., Vol. 7587, San Francisco, CA, 2010. DOI: 10.1117/12.845063.
  5. Mulholland, J.E. and Cadogan, S.A., "Intersatellite Laser Crosslinks, S.A, Aerospace and Electronic System", IEEE Transaction, Vol. 32, Issue 3, 1996, pp. 1011-1020. DOI: 10.1109/7.532260.
  6. Koudelka, O., Schmidt, M. and Ebert, J., "Design of a 40/50 GHz satellite ground station for fade mitigation experiments", Acta Astronautica, Vol. 86, 2013, pp. 68-76. DOI: 10.1016/j.actaastro.2012.10.001.
  7. Arbesser-Rastburg B,, "Radiowave propagation modelling for new satcom services at Ku-band and above", COST 255 Final Report, ESA Publications Division, SP-1252, March 2002.
  8. Koudelka, O., "Q/V-band communications and propagation experiments using ALPHASAT", Acta Astronautica, Vol. 69, Issues 11-12, 2011, pp. 1029-1037. DOI: 10.1016/j.actaastro.2011.07.008
  9. Panagopoulos, A. D., Pantelis-Daniel M. Arapoglou, John D., Kanellopoulos, and Panayotis G. Cottis, "Long- Term Rain Attenuation Probability and Site Diversity Gain Prediction Formulas", IEEE Transactions on Antennas and Propagation, Vol. 53, No. 7, 2005, pp. 2307-2313. DOI: 10.1109/TAP.2005.850762
  10. Fiser, O., "Site Diversity Gain Estimated from Rain Rate Records", RADIOENGINEERING, Vol. 12, No. 1, 2003.
  11. Yilmaz, U.C. and Cavdar, I.H., "Simplified Solution for Osculating Keplerian Parameter Corrections of GEO Satellites for Intersatellite Optical Link", Advances in Space Research, Vol. 55, Issue 7, 2015, pp. 1878-1884, 2015. DOI: 10.1016/j.asr.2014.12.004
  12. Soop, E. M., "Handbook of Geostationary Orbits", Kluwer Academic Publishers, Microsom Inc, California, 1983.
  13. Rossi, T., De Sanctis, M. Di Mattia, D. and Ruggieri, M., "Performance Analysis and Optimization of Site Diversity Techniques for EHF Satellite Links", Aerospace Conference, 2011, Big Sky, MT. DOI:10.1109/ AERO.2011.5747256.
  14. Possner, M. P. Fadrique, F. M., Maté, A. Á., Garcia, G., Choon, S. B., Ping C. and Hasnibi, W., "Operational and Performance Aspects of a Turn-Around Tracking System", SpaceOps 2010, Alabama, AIAA, 2010. DOI: 10.2514/6.2010-2374.
  15. Blanco, M. A., "Protected SATCOM On-Demand for Mobile Terminals: Waveform and System/Terminal Tradeoff", 28th AIAA Conference, California, 2010. DOI: 10.2514/6.2010-8810
  16. Barbaliscia, F. and Paraboni, A., "Joint statistics of rain intensity in eight Italian locations for satellite communication networks", Electronis. Letters, Vol. 18, 1982, pp. 118-119. DOI: 10.1049/el:19820079.
  17. Luglio, M., Mancini, R., Riva, C., Paraboni, A. and Barbaliscia, F., "Largescale site diversity for satellite communication networks", International. Journal of Satellite. Communication, Vol. 20, 2002, pp. 251-260. DOI: 10.1002/sat.723
  18. ITU-R, "Propagation data and prediction methods required for the design of Earth-space telecommunication systems", Rec. P.618-11, Geneva, Switzerland, 2013.