DOI QR코드

DOI QR Code

Temporal Characteristics of Selected Volatile Organic Compounds in Urban High-Stories Urban Apartments

  • Shin, Seung Ho ;
  • Kim, Ji-Hoon ;
  • Jo, Wan Kuen
  • Received : 2015.09.21
  • Accepted : 2015.10.19
  • Published : 2015.10.31

Abstract

In present study, the temporal characteristics of nine selected volatile organic compounds (VOCs), including four alcohol, 2 aldehyde, and 3 ketone compounds, in high-stories urban apartments over a 2-y period were investigated. The indoor VOC concentrations had generally a decreasing trend over the 2-y follow-up period. For examples, the 2E1H indoor concentration decreased from $10.8{\mu}g/m^3$ for the first two months to $5.1{\mu}g/m^3$ for the last two months. In addition, the DCA and ACT indoor concentrations decreased from 5.0 and $14{\mu}g/m^3$ for the first two months to 2.2 and $6.4{\mu}g/m^3$, respectively, for the last two months. The indoor-to outdoor concentration ratios over the 2-y period were much greater than 1, indicating that indoor VOC concentrations were higher than the outdoor VOC concentrations. Similar to those of the individual VOCs, the indoor-to-outdoor concentration ratios of all three VOC groups were higher than 1 over the 2-y follow-up period, suggesting higher indoor concentrations of the three VOC groups than outdoor concentrations. In consistence with the results of VOC indoor concentrations, the VOC emission rates decreased gradually as time passed, due to the decreased VOC emission strengths of indoor sources. Finally, there was an initial sharp decrease in the indoor VOC concentrations followed by a slower decrease, indicating a multi-exponential decay model for the target VOCs, which was demonstrated by comparison of the residuals and the adjusted coefficient of determination associated with the one and two-exponential fits of each data set.

Keywords

Temporal characteristics;Decay compartment model;Consumer product;High story;VOC source

References

  1. Bari, M. A., Kindzierski, W. B., Wheeler, A. J., Heroux, M. -E, Wallace, L. A., 2015, Source apportionment of indoor and outdoor volatile organic compounds at homes in Edmonton, Canada. Build. Environ., 90, 114-124. https://doi.org/10.1016/j.buildenv.2015.03.023
  2. Cakmak, S., Dales, R. E., Liu, L., Kauri, L. M., Lemieux, C. L., Hebbern, C., Zhu, J., 2014, Residential exposure to volatile organic compounds and lung function: results from a population-based cross-sectional survey, Environ. Poll., 194, 145-151. https://doi.org/10.1016/j.envpol.2014.07.020
  3. Chen, W., Persily, A. K., Hodgson, A. T., Offermann, F. J., Poppendieck, D., Kumagai, K., 2014, Area-specific airflow rates for evaluating the impacts of VOC emissions in U.S. single-family homes, Build. Environ., 71, 204-211. https://doi.org/10.1016/j.buildenv.2013.09.020
  4. Cometto-Muniz, J. E., Abraham, M. H., 2015, Compilation and analysis of types and concentrations of airborne chemicals measured in various indoor and outdoor human environments, Chemosphere, 127, 70-86. https://doi.org/10.1016/j.chemosphere.2014.12.089
  5. de Gennaro, G., de Gennaro, L., Mazzone, A., Porcelli, F., Tutino, M., 2014, Indoor air quality in hair salons: Screening of volatile organic compounds and indicators based on health risk assessment, Atmos. Environ., 83, 119-126. https://doi.org/10.1016/j.atmosenv.2013.10.056
  6. Deng, Q., Yang, X., Zhang, J. S., 2012, Key factor analysis of VOC sorption and its impact on indoor concen-trations: the role of ventilation, Build. Environ., 47, 182-187. https://doi.org/10.1016/j.buildenv.2011.07.026
  7. Do, D. H., Walgraeve, C., Amare, A. N., Barai, K. R., Parao, A. E., Demeestere, K., van Langenhove, H., 2015, Airborne volatile organic compounds in urban and industrial locations in four developing countries. Atmos. Environ., 119, 330-338. https://doi.org/10.1016/j.atmosenv.2015.08.065
  8. Gokhale, S., Kohajda, T., Schlink, U., 2008, Source apportionment of human personal exposure to volatile organic compounds in homes, offices and outdoors by chemical mass balance and genetic algorithm receptor models, Sci. Total Environ., 407, 122-138. https://doi.org/10.1016/j.scitotenv.2008.08.025
  9. Han, K. H., Zhang, J. S., Knudsen, H. N., Wargocki, P., Chen, H., Varshney, P. K., Guo, B., 2011, Development of a novel methodology for indoor emission source Identification, Atmos. Environ., 45, 3034-3045. https://doi.org/10.1016/j.atmosenv.2011.03.021
  10. Han, K., Zhang, J. S., Guo, B., 2014, A novel approach of integrating ventilation and air cleaning forsustainable and healthy office environments, Energy Build., 76, 32-42. https://doi.org/10.1016/j.enbuild.2014.02.055
  11. Jarnstrom, H., Saarela, K., Kalliokoski, P., Pasanen, A. -L., 2006, Reference values for indoor air pollution concentrations in new residential buildings in Finland, Atmos. Environ., 40, 7178-7191. https://doi.org/10.1016/j.atmosenv.2006.06.021
  12. Jarnstrom, H., Saarela, K., Kalliokoski, P., Pasanen, A. -L., 2007, Reference values for structure emissions measured on site in new residential buildings in Fin -land, Atmos. Environ., 41, 2290-2302. https://doi.org/10.1016/j.atmosenv.2006.11.033
  13. Langer, S., Beko, G., Bloom, E., Widheden, A., Ekberg, L., 2015, Indoor air quality in passive and conventional new houses in Sweden, Build. Environ., 93, 92-100. https://doi.org/10.1016/j.buildenv.2015.02.004
  14. Li, F., Niu, J., 2007, Control of volatile organic compounds indoors-development of an integrated masstransfer-based model and its application, Atmos. Environ., 41, 2344-2354. https://doi.org/10.1016/j.atmosenv.2006.11.022
  15. Liu, Z., Ye, W., Little, J. C., 2013, Predicting emissions of volatile and semivolatile organic compounds from building materials: a review, Build. Environ., 64, 7-25. https://doi.org/10.1016/j.buildenv.2013.02.012
  16. Liang, W., Yang, C., Yang, X., 2014, Long-term concentrations of volatile organic compounds in a new apartment in Beijing, China. Build. Environ., 82, 693-701. https://doi.org/10.1016/j.buildenv.2014.10.016
  17. Mishra, N., Bartsch, J., Ayoko, G. A., Salthammer, T., Morawska, L., 2015, Volatile organic compounds: characteristics, distribution and sources in urban schools, Atmos. Environ., 106, 485-491. https://doi.org/10.1016/j.atmosenv.2014.10.052
  18. Ongwandee, M., Moonrinta, R., Panyametheekul, S., Tangbanluekal, C., Morrison, G., 2011, Investigation of volatile organic compounds in office buildings in Bangkok, Thailand: Concentrations, sources, and occupant symptoms, Build. Environ., 46, 1512-1522. https://doi.org/10.1016/j.buildenv.2011.01.026
  19. Park, J. S., Ikeda, K., 2006, Variations of formaldehyde and VOC levels during 3 years in new and older homes, Indoor Air, 16, 129-135. https://doi.org/10.1111/j.1600-0668.2005.00408.x
  20. Rackes, A., Waring, M. S., 2013, Modeling impacts of dynamic ventilation strategies on indoor air quality of offices in six US cities, Build. Environ., 60, 243-253. https://doi.org/10.1016/j.buildenv.2012.10.013
  21. Schieweck, A., Bock, M. -C., 2015, Emissions from low-VOC and zero-VOC paints valuable alternatives to conventional formulations also for use in sensitive environments?, Build. Environ. 85, 243-252. https://doi.org/10.1016/j.buildenv.2014.12.001
  22. Shin, S. H., Jo, W. K., 2013, Longitudinal variations in indoor VOC concentrations after moving-into new apartments and indoor source characterization, Environ. Sc. Poll. Res., 20, 3696-3707 https://doi.org/10.1007/s11356-012-1296-z
  23. Su, F.-C., Mukherjee, B., Batterman, S., 2013, Determinants of personal, indoor and outdoor VOC concentrations: an analysis of the RIOPA data, Environ. Res., 126, 192-203. https://doi.org/10.1016/j.envres.2013.08.005
  24. Takigawa, T., Saijo, Y., Morimoto, K., Nakayama, K., Shibata, E., Tanaka, M., Yoshimura, T., Chikara, H., Kishi, R., 2012, A longitudinal study of aldehydes and volatile organic compounds associated with subjective symptoms related to sick building syndrome in new dwellings in Japan, Sci. Total Environ., 417-418, 61-67. https://doi.org/10.1016/j.scitotenv.2011.12.060
  25. Tuomainen, M., Tuomainen, A., Liesvuori, J., Pasanen, A. -P., 2003, The 3-year follow-up study in a block of flats-experiences in the use of the Finnish indoor climate classification, Indoor Air, 13, 136-147. https://doi.org/10.1034/j.1600-0668.2003.00171.x
  26. Uchiyama, S., Tomizawa, T., Tokoro, A., Aoki, M., Hishiki, M., Yamada, T., Tanaka, R., Sakamoto, H., Yoshida, T., Bekki, B., Inaba, Y., Nakagome, H., Kunugita, N., 2015, Gaseous chemical compounds in indoor and outdoor air of 602 houses throughout Japan in winter and summer, Environ. Res., 137, 364-372. https://doi.org/10.1016/j.envres.2014.12.005
  27. Wang, J., Smedje, J., Nordquist, T., Norback, D., 2015, Personal and demographic factors and change of subjective indoor air quality reported by school children in relation to exposure at Swedish schools: A 2-year longitudinal study, Sci. Total Environ., 508, 288-296. https://doi.org/10.1016/j.scitotenv.2014.12.001
  28. Wangchuk, T., Mazaheri, M., Clifford, S., Dudzinska, M. R., He, C., Buonanno, G., Morawska, L., 2015, Children's personal exposure to air pollution in rural villages in Bhutan, Environ. Res., 140, 691-698. https://doi.org/10.1016/j.envres.2015.06.006
  29. Xiong, J., Wang, L., Bai, Y., Zhang, Y., 2013, Measuring the characteristic parameters of VOC emission from paints, Build. Environ., 66, 65-71. https://doi.org/10.1016/j.buildenv.2013.04.025
  30. Yan, W., Zhang, Y,m Wang, X., 2009, Simulation of VOC emissions from building materials by using the statespace method, Build. Environ., 44, 471-478. https://doi.org/10.1016/j.buildenv.2008.04.011
  31. Ye, W., Little, J. C., Won, D., Zhang, X., 2014, Screeninglevel estimates of indoor exposure to volatile organic compounds emitted from building materials, Build. Environ., 75, 58-66. https://doi.org/10.1016/j.buildenv.2014.01.018

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)