DOI QR코드

DOI QR Code

A Study on Implanted and Annealed Antimony Profiles in Amorphous and Single Crystalline Silicon Using 10~50 keV Energy Bombardment

비정질 및 단결정 실리콘에서 10~50 keV 에너지로 주입된 안티몬 이온의 분포와 열적인 거동에 따른 연구

  • Jung, Won-Chae (Department of Electronic Engineering, Kyonggi University)
  • 정원채 (경기대학교 전자공학과)
  • Received : 2015.10.02
  • Accepted : 2015.10.24
  • Published : 2015.11.01

Abstract

For the formation of $N^+$ doping, the antimony ions are mainly used for the fabrication of a BJT (bipolar junction transistor), CMOS (complementary metal oxide semiconductor), FET (field effect transistor) and BiCMOS (bipolar and complementary metal oxide semiconductor) process integration. Antimony is a heavy element and has relatively a low diffusion coefficient in silicon. Therefore, antimony is preferred as a candidate of ultra shallow junction for n type doping instead of arsenic implantation. Three-dimensional (3D) profiles of antimony are also compared one another from different tilt angles and incident energies under same dimensional conditions. The diffusion effect of antimony showed ORD (oxygen retarded diffusion) after thermal oxidation process. The interfacial effect of a $SiO_2/Si$ is influenced antimony diffusion and showed segregation effects during the oxidation process. The surface sputtering effect of antimony must be considered due to its heavy mass in the case of low energy and high dose conditions. The range of antimony implanted in amorphous and crystalline silicon are compared each other and its data and profiles also showed and explained after thermal annealing under inert $N_2$ gas and dry oxidation.

Keywords

Antimony implantation;ORD;Diffusion;Sputtering;Computer simulation

References

  1. T. Alzanki, K. M. Kandil, N. Bennett, B. J. Sealy, M. R. Alenezi, A. Almeshal, M. Jafar, and A. Ghoneim, SOJ Mat. Sci. Eng., 2, 1 (2014).
  2. N. S. Benett, N. E. B. Cowern, A. J. Smith, R. M. Gwilliam, B, J. Sealy, L. O'Reilly, P. J. McNally, G. Cooke, and H. Kheyrandish, Appl. Phys. Lett., 89, 182122 (2006). [DOI: http://dx.doi.org/10.1063/1.2382741] https://doi.org/10.1063/1.2382741
  3. R. Low, B. J. Sealy, and R. Gwilliam, J. Appl. Phys., 95, 5471 (2004). [DOI: http://dx.doi.org/10.1063/1.1702096] https://doi.org/10.1063/1.1702096
  4. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).
  5. J. F. Ziegler, SRIM 2013 Manual, http://www.srim.org/.
  6. W. Moller and W. Eckstein, Nucl. Insrum. Methods B, 2, 814 (1984). [DOI: http://dx.doi.org/10.1016/0168-583X(84)90321-5] https://doi.org/10.1016/0168-583X(84)90321-5
  7. W. Eckstein, Computer Simulation of Ion-Solid Interactions (Springer, Berlin 1991). [DOI: http://dx.doi.org/10.1007/978-3-642-73513-4] https://doi.org/10.1007/978-3-642-73513-4
  8. H. Ryssel, J. Lorenz, and W. Kreuger, Nucl. Insrum. Methods, B19, 45, (1987). [DOI: http://dx.doi.org/10.1016/S0168-583X(87)80012-5] https://doi.org/10.1016/S0168-583X(87)80012-5
  9. User's Guide, ICECREM Manual (1996).
  10. C. Park, K. M. Klein, and A.L.F. Tasch, Solid State Electonics, 33, 645 (1990). [DOI: http://dx.doi.org/10.1016/0038-1101(90)90176-F] https://doi.org/10.1016/0038-1101(90)90176-F
  11. C. Park, K. M. Klein, and A.L.F. Tasch, IEEE Trans. Electron Dev., 39, 1614 (1992). [DOI: http://dx.doi.org/10.1109/16.141226] https://doi.org/10.1109/16.141226