DOI QR코드

DOI QR Code

Characteristics of Sputtering Carbon Films for the Improvement of Physical Properties in Carbon Fiber

탄소섬유 물리적 특성 향상을 위한 스퍼터링 탄소박막의 특성에 대한 연구

  • Park, Chulmin (Advanced High-speed Railroad Systems Research Division, Korea Railroad Research Institute) ;
  • Park, Yong Seob (Department of Photoelectronics, Chosun College of Science and Technology) ;
  • Kim, Jae-Moon (Graduate School of Transportation, Korea National University of Transportation)
  • 박철민 (한국철도기술연구원 고속철도연구본부) ;
  • 박용섭 (조선이공대학교 광전자과) ;
  • 김재문 (한국교통대학교 교통전문대학원)
  • Received : 2015.10.12
  • Accepted : 2015.10.22
  • Published : 2015.11.01

Abstract

We investigated the characterizations of carbon films fabricated by dual magnetron sputtering under various RF powers for the improvement of physical properties in carbon fiber (CF). All sputtered carbon films exhibited amorphous structure, regardless of RF powers, resulting in uniform and smooth surfaces. The hardness and elastic modulus are increased with the increase of RF power, and the adhesion and friction properties of carbon films were improved with the increase of RF power. In the results, The increase of RF power in the sputtering method improved tribological properties of the carbon films, and these attributes can be expected to improve the physical properties of the carbon fiber reinforcement plastics.

Keywords

Carbon;Dual magnetron sputtering;Hardness;Surface roughness;Carbon fiber

Acknowledgement

Supported by : 한국철도기술연구원

References

  1. K. Y. Rhee, M. K. Shin, and N. S. Choi, J. Adh. Sci. & Tech., 17, 1619 (2003). [DOI: http://dx.doi.org/10.1163/156856103322396703] https://doi.org/10.1163/156856103322396703
  2. J. Fujimoto and T. Tamura, Adv. Compo. Mat., 7, 365 (1998). [DOI: http://dx.doi.org/10.1163/156855198X00255] https://doi.org/10.1163/156855198X00255
  3. R. Kalfat and R. Al-Mahaidi, Composite Structures, 92, 2738 (2010). [DOI: http://dx.doi.org/10.1016/j.compstruct.2010.04.004] https://doi.org/10.1016/j.compstruct.2010.04.004
  4. J. Robertson, Mater. Sci. Eng. R, 37, 129 (2002). [DOI: http://dx.doi.org/10.1016/S0927-796X(02)00005-0] https://doi.org/10.1016/S0927-796X(02)00005-0
  5. J. Robertson, Pure Appl. Chem., 66, 1789 (1994). [DOI: http://dx.doi.org/10.1351/pac199466091789] https://doi.org/10.1351/pac199466091789
  6. Y. Lifshitz, Diamond Relat. Mater., 8, 1659 (1999). [DOI: http://dx.doi.org/10.1016/S0925-9635(99)00087-4] https://doi.org/10.1016/S0925-9635(99)00087-4
  7. C. M. Park, Proc. of KIEE Autumn Conference, 2014.11,286-287 (2014).
  8. A. Grill, Surf. Coat. Technol., 94, 507 (1997). [DOI: http://dx.doi.org/10.1016/S0257-8972(97)00458-1] https://doi.org/10.1016/S0257-8972(97)00458-1
  9. Y. S. Park, H. S. Myung, J. G. Han, and B. Hong, Thin Solid Films, 482, 275 (2005). [DOI: http://dx.doi.org/10.1016/j.tsf.2004.11.160] https://doi.org/10.1016/j.tsf.2004.11.160
  10. A. Czyzniewski, Thin Solid Films, 433, 180 (2003). [DOI: http://dx.doi.org/10.1016/S0040-6090(03)00324-9] https://doi.org/10.1016/S0040-6090(03)00324-9
  11. S. Miyake, T. Hashizume, W. Kurosaka, M. Sakura, and M. Wang, Surf. Coat. Technol., 202, 1023 (2007). [DOI: http://dx.doi.org/10.1016/j.surfcoat.2007.07.079] https://doi.org/10.1016/j.surfcoat.2007.07.079
  12. T. Takeno, T. Sugawara, H. Miki, and T. Takagi, Diamond Relat. Mater., 18, 1023 (2009). [DOI: http://dx.doi.org/10.1016/j.diamond.2009.01.029] https://doi.org/10.1016/j.diamond.2009.01.029
  13. T. Polcar, M. Evaristo, and A. Cavaleiro, Vacuum, 81, 1439 (2007). [DOI: http://dx.doi.org/10.1016/j.vacuum.2007.04.010] https://doi.org/10.1016/j.vacuum.2007.04.010
  14. Y. Jeon, Y. S. Park, H. J. Kim, W. S. Choi, and B. Hong, J. Korean Phys. Soc., 51, 1124 (2007). [DOI: http://dx.doi.org/10.3938/jkps.51.1124] https://doi.org/10.3938/jkps.51.1124