DOI QR코드

DOI QR Code

High-Performance Silicon-on-Insulator Based Dual-Gate Ion-Sensitive Field Effect Transistor with Flexible Polyimide Substrate-based Extended Gate

유연한 폴리이미드 기판 위에 구현된 확장형 게이트를 갖는 Silicon-on-Insulator 기반 고성능 이중게이트 이온 감지 전계 효과 트랜지스터

Lim, Cheol-Min;Cho, Won-Ju
임철민;조원주

  • Received : 2015.10.16
  • Accepted : 2015.10.23
  • Published : 2015.11.01

Abstract

In this study, we fabricated the dual gate (DG) ion-sensitive field-effect-transistor (ISFET) with flexible polyimide (PI) extended gate (EG). The DG ISFETs significantly enhanced the sensitivity of pH in electrolytes from 60 mV/pH to 1152.17 mV/pH and effectively improved the drift and hysteresis phenomenon. This is attributed to the capacitive coupling effect between top gate and bottom gate insulators of the channel in silicon-on-transistor (SOI) metal-oxide-semiconductor (MOS) FETs. Accordingly, it is expected that the PI-EG based DG-ISFETs is promising technology for high-performance flexible biosensor applications.

Keywords

ISFET;Extended gate;Dual gate;Polyimide

References

  1. A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, J. Am. Chem. Soc., 127, 2264 (2005). [DOI: http://dx.doi.org/10.1021/ja044087q] https://doi.org/10.1021/ja044087q
  2. R. L. Edelstein, C. R. Tamanaha, P. E. Sheehan, M. M. Miller, D. R. Baselt, L. Whitman, and R. J. Colton, Biosens. Bioelectron., 14, 805 (2000). [DOI: http://dx.doi.org/10.1016/S0956-5663(99)00054-8] https://doi.org/10.1016/S0956-5663(99)00054-8
  3. K. S. Kim, H. S. Lee, J. A. Yang, M. H. Jo, and S. K. Hahn, Nanotechnology, 20, 235501 (2009). [DOI: http://dx.doi.org/10.1088/0957-4484/20/23/235501] https://doi.org/10.1088/0957-4484/20/23/235501
  4. H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, and J. O. Lee, J. Am. Chem. Soc., 127, 11906 (2005). [DOI: http://dx.doi.org/10.1021/ja053094r] https://doi.org/10.1021/ja053094r
  5. D. H. Kwon, B. W. Cho, C. S. Kim, and B. K. Sohn, Sensor. Actuat. B-Chem., 34, 441 (1996). [DOI: http://dx.doi.org/10.1016/S0925-4005(96)01938-7] https://doi.org/10.1016/S0925-4005(96)01938-7
  6. T. Akiyama, Y. Ujihira, Y. Okabe, T. Sugano, and E. Niki, IEEE Trans. Electron Dev., 29, 1936 (1982). [DOI: http://dx.doi.org/10.1109/T-ED.1982.21054] https://doi.org/10.1109/T-ED.1982.21054
  7. L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, Mater. Chem. Phys., 63, 19 (2000). [DOI: http://dx.doi.org/10.1016/S0254-0584(99)00184-4] https://doi.org/10.1016/S0254-0584(99)00184-4
  8. L. Bousse and P. Bergveld, Sens Actuators, 6, 65 (1984). [DOI: http://dx.doi.org/10.1016/0250-6874(84)80028-1] https://doi.org/10.1016/0250-6874(84)80028-1
  9. S. Jamasb, S. Collins, and R. L. Smith, Sens Actuators B Chem., 49, 146 (1998). [DOI: http://dx.doi.org/10.1016/S0925-4005(98)00040-9] https://doi.org/10.1016/S0925-4005(98)00040-9
  10. H. K. Lim and J. G. Fossum, IEEE Trans. Electron Dev., 30, 1244 (1983). [DOI: http://dx.doi.org/10.1109/T-ED.1983.21282] https://doi.org/10.1109/T-ED.1983.21282
  11. H. J. Jang and W. J. Cho, Sci. Rep., 4 (2014).

Acknowledgement

Supported by : 한국연구재단