DOI QR코드

DOI QR Code

Photoinduced Hydrophilicity of Heterogeneous TiO2/WO3 Double Layer Films

이종 접합 구조를 갖는 TiO2/WO3 이중 박막의 광유기 친수 특성

Oh, Ji-Yong;Lee, Byung-Roh;Kim, Hwa-Min;Lee, Chang-Hyun
오지용;이병로;김화민;이창현

  • Received : 2015.10.09
  • Accepted : 2015.10.24
  • Published : 2015.11.01

Abstract

The photoinduced hydrophilicity of $TiO_2/WO_3$ double layer films was fabricated by using a conventional rf-magnetron sputtering method. The photoinduced hydrophilic reaction of the $TiO_2$ surface was enhanced by the presence of $WO_3$ under the $TiO_2$ layer by irradiation of a 10 W cylindrical fluorescent light bulb. However, when the $TiO_2$ and $WO_3$ layers were separated by an insulating layer, the surface did not appeared high hydrophilic, under the same light bulb. The enhanced photoinduced hydrophilic reaction can be explained by the charge transfer between $TiO_2$ and $WO_3$ layers. It was also demonstrated that visible light passing through the $TiO_2$ layer could excite $WO_3$. Thus, visible light can be used for the hydrophilic reaction in the present $TiO_2/WO_3$ system.

Keywords

$TiO_2$;$WO_3$;Double layer;Photo induced hydrophilicity;Indoor lights

References

  1. K. Honda and A. Fujishim, Nature, 238, 37 (1972). [DOI: http://dx.doi.org/10.1038/238037a0] https://doi.org/10.1038/238037a0
  2. A. Heller, Acc. Chem. Res., 28, 141 (1995). [DOI: http://dx.doi.org/10.1021/ar00060a006] https://doi.org/10.1021/ar00051a007
  3. A. L. Linsebigler, G. Q. Lu, and J. T. Yates, Chem. Rev., 95, 735 (1995). [DOI: http://dx.doi.org/10.1021/cr00035a013] https://doi.org/10.1021/cr00035a013
  4. A. Fujishima, K. Hashimoto, and T. Watanabe, Fundamentals and Applications (BKC, Inc., 1999) p. 14.
  5. T. Kawai and T. Sakata, Nature, 286, 474 (1980). [DOI: http://dx.doi.org/10.1038/286474a0] https://doi.org/10.1038/286474a0
  6. I. Rosenberg, Brock, and A. J. Heller, Phys. Chem., 96, 3523 (1992). [DOI: http://dx.doi.org/10.1021/j100196a061] https://doi.org/10.1021/j100196a061
  7. A. Mills and S.L.J. Hunte, Photochem Photobiol A Chem., 108, 1 (1997). [DOI: http://dx.doi.org/10.1016/S1010-6030(97)00118-4] https://doi.org/10.1016/S1010-6030(97)00118-4
  8. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Nature, 388, 431 (1997). [DOI: http://dx.doi.org/10.1038/41233] https://doi.org/10.1038/41233
  9. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Adv. Mater., 10, 135 (1998). [DOI: http://dx.doi.org/10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M] https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M
  10. N. Sakai, R. Wang, A. Fujishima, T. Watanabe, and K. Hashimoto, Langmuir, 14, 5918 (1998). [DOI: http://dx.doi.org/10.1021/la980623e] https://doi.org/10.1021/la980623e
  11. R. Wang, N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B, 103, 2188 (1999). [DOI: http://dx.doi.org/10.1021/jp983386x] https://doi.org/10.1021/jp983386x
  12. T. Watanabe, A. Nakajima, R. Wang, Minabe, S. Koizumi, A. Fujishima, and K. Hashimoto, Thin Solid Films, 351, 260 (1999). [DOI: http://dx.doi.org/10.1016/S0040-6090(99)00205-9] https://doi.org/10.1016/S0040-6090(99)00205-9
  13. M. Miyauchi, A, Nakajima, A, Fujishima, K, Hashimoto, and T. Watanabe, Chem. Mater., 12, 3 (2000). [DOI: http://dx.doi.org/10.1021/cm990556p] https://doi.org/10.1021/cm990556p
  14. A. Fujishima, K. Hashimoto, and T. Watanabe, TiO2 Photocatalysis Fundamentals and Applications (BKC Inc., Tokyo, Japan, 1999).
  15. N. Serpone, E. Borgarello, and M. J. Gratzel, Chem. Soc., Chem. Commun., 342 (1984). [DOI: http://dx.doi.org/10.1039/c39840000342] https://doi.org/10.1039/c39840000342
  16. N. Serpone, P, Maruthamuthu, P. Pichat, E. Pelizzetti, and H. Hidaka, J. Photochem. Photobiol. A, 85, 247 (1995). [DOI: http://dx.doi.org/10.1016/1010-6030(94)03906-B] https://doi.org/10.1016/1010-6030(94)03906-B
  17. I. Bedja and P. V. Kamat, J. Phys. Chem., 99, 9182 (1995). [DOI: http://dx.doi.org/10.1021/j100022a035] https://doi.org/10.1021/j100022a035
  18. A. Hattori, Y. Tokihisa, H. Tada, and S. Ito, J. Electro Chem. Soc., 147, 2279 (2000). [DOI: http://dx.doi.org/10.1149/1.1393521] https://doi.org/10.1149/1.1393521
  19. H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge and S. Ito, J. Phys. Chem. B, 104, 4585 (2000). [DOI: http://dx.doi.org/10.1021/jp000049r] https://doi.org/10.1021/jp000049r
  20. Y. Cao, X. Zhang, W. Yang, H. Du, Y. Bai, T. Li, and J. Yao, Chem. Mater., 12, 3445 (2000). [DOI: http://dx.doi.org/10.1021/cm0004432] https://doi.org/10.1021/cm0004432
  21. L. Shi, C. Li, H. Gu, and D. Fang, Mater. Chem. Phys., 62, 62 (2000). [DOI: http://dx.doi.org/10.1016/S0254-0584(99)00171-6] https://doi.org/10.1016/S0254-0584(99)00171-6
  22. A. D. Paola, L. Palmisano, A. M. Venezia, and V. J. Augugliaro, Phys. Chem. B, 103, 8236 (1999). [DOI: http://dx.doi.org/10.1021/jp9911797] https://doi.org/10.1021/jp9911797
  23. G. Marci, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R.J.D. Tilley, and A. M Venezia, J. Phys. Chem. B, 105, 1026 (2001). [DOI: http://dx.doi.org/10.1021/jp003172r] https://doi.org/10.1021/jp003172r
  24. Y. R. Do, W. Lee, K. Dwight, and A. Wold, J. Solid State Chem., 108, 198 (1994). [DOI: http://dx.doi.org/10.1006/jssc.1994.1031] https://doi.org/10.1006/jssc.1994.1031
  25. C. Martin, G. Solana, V. Rives, G. Marci, L. Palmisano, and A. Sclafami, J. Chem. Soc. Faraday Trans., 92, 819 (1996). [DOI: http://dx.doi.org/10.1039/ft9969200373] https://doi.org/10.1039/ft9969200819
  26. Y. T. Kwon, K. Y. Song, W. I. Lee, G. J. Choi, and Y. R. Do, J. Catal., 191, 192 (2000). [DOI: http://dx.doi.org/10.1006/jcat.1999.2776] https://doi.org/10.1006/jcat.1999.2776
  27. K. Y. Song, M. K. Park, Y. T. Kwon, H. W. Lee, W. J. Chung, and W. I. Lee, Chem. Mater., 13, 2349 (2001). [DOI: http://dx.doi.org/10.1021/cm000858n] https://doi.org/10.1021/cm000858n
  28. G. Marci, L. Palmisano, A. Sclafani, A. M. Venezia, R. Campostrini, G. Carturan, C. Martin, V. Rives, and G. J. Solana, Chem. Soc. Faraday Trans., 92, 819 (1996). [DOI: http://dx.doi.org/10.1039/ft9969200819] https://doi.org/10.1039/ft9969200819
  29. I. Shiyanovskaya and M. Hepel, J. Electrochem. Soc., 145, 3981 (1998). [DOI: http://dx.doi.org/10.1149/1.1838902] https://doi.org/10.1149/1.1838902
  30. I. Shiyanovskaya and M. Hepel, J. Electrochem. Soc., 146, 243 (1999). [DOI: http://dx.doi.org/10.1149/1.1391593] https://doi.org/10.1149/1.1391593
  31. M. Callies, Y. Chen, F. Marty, A. Pepin, and D. Quere, Microelectron. Eng., 78, 100 (2005). [DOI: http://dx.doi.org/10.1016/j.mee.2004.12.093] https://doi.org/10.1016/j.mee.2004.12.093
  32. B. Bhushan, Y. C. Jung, and K. Koch, (Phil. Trans. R. Soc. A, 367, 2009) p. 1631. [DOI: http://dx.doi.org/10.1098/rsta.2009.0014] https://doi.org/10.1098/rsta.2009.0014
  33. R. Wang, N. Sakai, A. Fujishima, T. Watanabe, and H. Hashimoto, J. Phys. Chem. B, 103, 2188 (1999). [DOI: http://dx.doi.org/10.1021/jp983386x] https://doi.org/10.1021/jp983386x
  34. M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto, Chem. Mater., 14, 2812 (2002). [DOI: http://dx.doi.org/10.1021/cm020076p] https://doi.org/10.1021/cm020076p
  35. K. Ishibashi, Y. Nosaka, K. Hashimoto, and A. Fujishima, J. Phys. Chem. B, 102, 2117 (1998). [DOI: http://dx.doi.org/10.1021/jp973401i] https://doi.org/10.1021/jp973401i
  36. K. Ikeda, R. Baba, K. Hashimoto, and A. Fujishima, J. Phys. Chem., 101, 2617 (1997). [DOI: http://dx.doi.org/10.1021/jp9627281] https://doi.org/10.1021/jp9627281
  37. N. Sakai, A. Fuhishima, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B, 105, 3023 (2001). [DOI: http://dx.doi.org/10.1021/jp003212r] https://doi.org/10.1021/jp003212r

Acknowledgement

Grant : 유공압 실린더용 대면적 반응성 스퍼터링에 의한 고접착 고경도 복합 알루미늄 입체 코팅 기술개발

Supported by : 중소기업청