DOI QR코드

DOI QR Code

Electrical Characteristics of Dye Sensitized Solar Cell According to Condition of Dye Adsorption

염료 흡착 조건에 따른 염료감응형 태양전지의 전기적 특성

  • Kim, Ji-Woong (Department of Electrical Engineering, DongShin University) ;
  • Lee, Kyung-Sup (Department of Electrical Engineering, DongShin University) ;
  • Choi, Yong-Sung (Department of Electrical Engineering, DongShin University)
  • 김지웅 (동신대학교 전기공학과) ;
  • 이경섭 (동신대학교 전기공학과) ;
  • 최용성 (동신대학교 전기공학과)
  • Received : 2015.10.21
  • Accepted : 2015.10.24
  • Published : 2015.11.01

Abstract

This paper is designed to find out where power reaches the highest point as the load of solar cells varies. In addition, the current and power were measured when irradiation changes, and the correlation between current and power was investigated. On top of that, experiments were conducted with the light volume kept constant and with the incoming light angle changing in order to figure out the incoming light angle that produces the most power and to conduct analyses. It was ascertained that if the load increases, the current decreases and the voltage increases. Since the power of 0.9828[W] was the highest when measurements were done, it can be said that when a load of 30[%] is applied to the solar cells, they are the most efficient.

Keywords

DSSC;Solar cell;Irradiation;Dye adsorption;I-V characteristics

References

  1. A. R. Park, E. M. Jin, and H. B. Gu, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 315 (2012).
  2. J. Lee, J. C. Yang, S. K. Kim, and S. Y. So, Trans. of KIEE, 63, 1312 (2014).
  3. C. H. Shim, Y. G. Kim, D. H. Kim, H. J. Lee, and H. J. Lee, Trans. of KIEE, 60, 114 (2011).
  4. H. C. Ki, S. H. Kim, D. G. Kim, T. U. Kim, H. K. Jin, and S. Y. So, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 902 (2012).
  5. M. Gratzel, Nature, 421, 6923 (2003). [DOI: http://dx.doi.org/10.1038/421586a] https://doi.org/10.1038/421586a
  6. H. W. Suh, MS Thesis, p. 3, Graduate School of Pusan National University, Busan (2008).
  7. B. Y. Oh, S. K. Kim, and D. G. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 298 (2013).
  8. K. Tennakone, J. Bandara, P.K.M. Bandaranayake, G.R.A. Kumara, and A. Konno, Jpn. J. Appl. Phys., Part 2: Lett., 40, L732 (2001). https://doi.org/10.1143/JJAP.40.L732
  9. G. Rothenberger, P. Comte, and M. Gratzel., Sol. Energ. Mat. Sol. Cells., 58, 321 (1999). [DOI: http://dx.doi.org/10.1016/S0927-0248(99)00015-X] https://doi.org/10.1016/S0927-0248(99)00015-X
  10. F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R, Humphry-Baker, P. Wang, S. M. Zakeeruddin, and M. Gratzel, J. Am. Chem. Soc., 130, 10720 (2008). [DOI: http://dx.doi.org/10.1021/ja801942j] https://doi.org/10.1021/ja801942j
  11. J. Kim and J. S. Kim, J. Nanosci. Nanotechnol., 11, 7335 (2011). [DOI: http://dx.doi.org/10.1166/jnn.2011.4843] https://doi.org/10.1166/jnn.2011.4843
  12. B. Hyun, Y. Zhong, A. Bartnik, L. Sun, H. Abruna, F. W. Wise, J. D. Goodreau, J. R. Matthews, T. M. Leslie, and N. F. Borrelli, ACS Nano, 11, 2206 (2008). [DOI: http://dx.doi.org/10.1021/nn800336b] https://doi.org/10.1021/nn800336b
  13. S. Y. Park, H. W. Seo, M. K. Son, S. K. Kim, N. Y. Hong, J. Y. Song, K. Prabakar, and H. J. Kim, Trans. KIEE, 62, 208 (2013).
  14. J. W. Kim, MS Thesis, p. 1-38, Graduate School of Dongshin University, Naju (2013).