Variation of Nitrogen Removal Efficiency and Microbial Communities Depending on Operating Conditions of a CANON Process

CANON 공정에서 운전조건에 따른 질소 제거효율 및 미생물군집 변화

  • Jo, Kyungmin (Department of civil and environmental engineering, Pusan National University) ;
  • Park, Younghyun (Department of civil and environmental engineering, Pusan National University) ;
  • Cho, Sunja (Department of microbiology, Pusan National University) ;
  • Lee, Taeho (Department of civil and environmental engineering, Pusan National University)
  • 조경민 (부산대학교 사회환경시스템공학부) ;
  • 박영현 (부산대학교 사회환경시스템공학부) ;
  • 조순자 (부산대학교 미생물학과) ;
  • 이태호 (부산대학교 사회환경시스템공학부)
  • Received : 2015.04.03
  • Accepted : 2015.06.20
  • Published : 2015.06.30


Nitrogen removal is one of the most important issues about wastewater treatment because nitrogen is a primary pollutant caused various problems such as eutrophication. We developed a CANON microbial community by using AOB and ANAMMOX bacteria as seeding sources. When 100 mg-N/L of influent ammonium was supplied, the DO above 0.4 mg/L showed a very low TN removal efficiency while the DO of 0.3 mg/L showed TN removal efficiency as high as 71.3%. When the influent ammonium concentration was reduced to 50 mg/L, TN removal efficiency drastically deceased. However, TN removal efficiency was recovered to above 70% after 14 day operation when the influent nitrogen concentration was changed again from 50 mg-N/L to 100 mg-N/L. According to the operating temperature from $37{\pm}1^{\circ}C$ to $20{\pm}1^{\circ}C$, TN removal efficiency also rapidly decreased but gradually increased again up to $70.0{\pm}2.6$%. The analysis of PCR-DGGE showed no substantial difference in microbial community structures under different operational conditions. This suggests that if CANON sludge is once successfully developed from a mixture of AOB and ANAMMOX bacteria, the microbial community can be stably maintained regardless of the changes in operational conditions.


CANON;ANAMMOX;Partial Nitrification;Microbial Community


  1. Kartal, B., Kuenen, J. G. and Van Loosdrecht, M. C. M., "Sewage treatment with anammox," Sci., 328(5979), 702-703(2010).
  2. Strous, M., Kuenen, J. G. and Jetten, M. S. M., "Key physiology of anaerobic ammonium oxidation," Appl. Environ. Microbiol., 65, 3248-3250(1999).
  3. Chamchoi, N., Nitisoravut, S. and Schmidt, J. E., "Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification," Bioresour. Technol., 99(9), 3331-3336(2008).
  4. Kampschreur, M. J., van der Star, W. R. L., Wielders, H. A., Mulder, J. W., Jetten, M. S. M., van Loosdrecht, M. C. M., "Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment," Water Res., 42(3), 812-826(2008).
  5. Dosta, J., Fernandez, I., Vazquez-Padin, J. R., Mosquera-Corral, A., Campos, J. L., Mata-Alvarez, J. and Mendez, R., "Short- and long-term effects of temperature on the Anammox process," J. Hazard. Mater., 154(1-3), 688-693(2008).
  6. Van Hulle, S. W. H., Vandeweyer, H. J. P., Meesschaert, B. D., Vanrolleghem, P. A., Dejans, P. and Dumoulin, A., "Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams," Chem. Eng. J., 162(1), 1-20(2010).
  7. Denac, M., Uzman, S., Tanaka, H. and Dunn, I. J., "Modeling of experiments on biofilm penetration effects in a fluidized bed nitrification reactor," Biotechnol. Bioeng., 25, 1841-1861(1983).
  8. Hellinga, C., Schellen, A. A. J. C., Mulder, J. W., Van Loosdrechet, M. C. M. and Heijnen J. J., "The SHARON process: an innovative method for nitrogen removal from ammoniarich wastewater," Water Sci. Technol., 37, 135-142(1998).
  9. Surmacz-Gorska, J., Cichon, A. and Miksch, K., "Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification," Water Sci. Technol., 36(10), 73-78(1997).
  10. Wang, S. Y., Gao, D. W., Peng, Y. Z., Wang, P. and Yang, Q., "Nitrification denitrification via nitrite for nitrogen removal from high nitrogen soybean wastewater with on-line fuzzy control," Water Sci. Technol., 49(5-6), 121-127(2004).
  11. Kuai, L. and Verstraete, W., "Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system," Appl. Environ. Microbiol., 64(11), 4500-4506(1998).
  12. Jetten, M. S. M., Schmid, M., Schmidt, I., Wubben, M., Van Dongen, U. and Abma, W., "Improved nitrogen removal by application of new nitrogen cycle bacteria," Rev. Environ. Sci. BioTechnol., 1, 51-63(2002).
  13. Wouter, R. L. Van der Star, Abma, W. R., Blommers, D., Mulder, J.-W., Tokutomi, T., Strous, M., Picioreanu, C. and Mark, C. M. Van Loosdrecht., "Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam," Water Res., 44(18), 4149-4163(2007).
  14. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J., "16S Ribosomal DNA ampilfication for phylogenetic study," J. Bacteriol., 137(2), 697-703(1991).
  15. Nishimura, M., Kita-T., Kogure K., Ohwasa K. and Simidu U. A., "New method to detect viable bacteric in natural sea-water using 16S rRNA Oligonucleotide probe," J. Oceanog., 49, 51-56(2003).
  16. Kaksonen, A. H., Plumb, J. J., Franzmann, P. D. and Puhakka, J. A., "Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal and sulfate-containing wastewater," FEMS Microbiol. Ecol., 47, 279-289(2004).
  17. Jung, J., Kang, S., Chung, Y. and Ahn, D., "Factors affecting the activity of anammox bacteria during start up in the continuous culture reactor," Water Sci. Technol., 55(1), 459-468(2007).
  18. Vazquez-Padin, J. R., Pozo, M. J. Jarpa, M., Figueroaa, M., Franco, A., Mosquera-Corral, A., Campos, J. L. and Mendez R., "Treatment of anaerobic sludge digester effluents by the CANON process," J. Hazard. Mater., 166, 336-341(2009).
  19. Jin, R., Yang, G., Yu, J. and Zheng, P., "The inhibition of the Anammox process: A review," Chem. Eng. J., 197(15), 67-79(2012).
  20. Anthonisen, A. C., Loehr, R. C., Prakasam, T. S. and Srinath, E. G., "Inhibition of nitrification by ammonia and nitrous acid," J. Water Pollut. Contro., 48, 835-852(1976).
  21. Chang, X., Li, D., Liang, Y., Yang, Z., Cui, S., Liu, T., Zeng, H. and Zhang, J., "Performance of a completely autotrophic nitrogen removal over nitrite process for treating wastewater with different substrates at ambient temperature," J. Environ. Sci., 25(4), 688-697(2013).
  22. Yamagishi, T., Takeuchi, M., Wakiya, Y. and Waki, M., "Distribution and characterization of anammox in a swine wastewater activated sludge facility," Water Sci. Technol., 67(10), 2330-2336(2013).
  23. Bae, H., Chung, Y. C. and Jung, J. Y., "Microbial community structure and occurrence of diverse autotrophic ammonium oxidizing microorganisms in the anammox process," Water Sci. Technol., 61(11), 2723-2732(2010).
  24. Qiao, J. T., Qiu, Y. L., Yuan, X. Z., Shi, X. S., Xu, X. H. and Guo, R. B., "Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw," Bioresour. Technol., 143, 512-518(2013).
  25. Wang, L., Zheng, P., Chen, T., Chen, J., Xing, Y., Ji, Q., Zhang, M. and Zhang, J., "Performance of autotrophic nitrogen removal in the granular sludge bed reactor," Bioresour. Technol., 123, 78-85(2012).
  26. Fukushima, T., Whang, L. M., Chiang, T. Y., Lin, Y. H., Chevalier, L. R., Chen, M. C. and Wu, Y. J., "Nitrifying bacterial community structures and their nitrification performance under sufficient and limited inorganic carbon conditions," Appl. Microbiol. Biotechnol., 97(14), 6513-6523(2013).
  27. Isaka, K., Kimura, Y., Osaka, T. and Tsuneda, S., "High-rate denitrification using polyethylene glycol gel carriers entrapping heterotrophic denitrifying bacteria," Water Res., 46(16), 4941-4948(2012).
  28. Schwarz, J. I., Eckert, W. and Conrad, R., "Community structure of Archaea and Bacteria in a profundal lake sediment Lake Kinneret (Israel)," Syst. Appl. Microbiol., 30(3), 239-254(2007).

Cited by

  1. Nitrogen removal characteristics of pigment wastewater using PAC-A/O process vol.32, pp.1, 2018,