DOI QR코드

DOI QR Code

유기성 폐자원의 최종생분해도 및 다중 분해속도 평가

Ultimate Anaerobic Biodegradability and Multiple Decay Rate Coefficients of Organic Wastes

  • 투고 : 2015.07.01
  • 심사 : 2015.07.25
  • 발행 : 2015.07.31

초록

본 논문에서는 Graphical Statistic Analysis (GSA) 방법을 이용하여 유기성 폐자원의 최종생분해도와 다중 분해속도를 평가하였다. GSA에 의한 최종생분해도는 돈분뇨 69%, 젖소 생분뇨 45%, 도축폐기물 66%를 나타냈고 음식물류 폐기물과 음폐수는 각각 79%와 87%이었으며, 1차 슬러지와 폐활성 슬러지는 각각 68%와 39%이었다. 유기성 폐자원의 분해양상을 정확히 표현하기 위하여 사용된 다중분해속도해석(Multi k Analysis) 방법을 이용해 평가한 결과 돈분뇨는 $k_1$ ($0.116day^{-1}$)의 속도로 평균 31일 안에 전체 생분해성 유기물 중 빠르게 분해되는 분율($S_1$)인 89%가 분해되었으며, 느리게 분해되는 $S_2$의 분율은 11%로써 $k_2$ ($0.004day^{-1}$)의 속도로 남은 기간 동안 분해되었다. 젖소 생분뇨는 $k_1$ ($0.074day^{-1}$)의 속도로 평균 29일 안에 분해되었으며 $S_1$의 분율은 91%이었다. 도축폐기물과 1차 슬러지는 $k_1$ ($0.095day^{-1}$)의 같은 속도로 분해되었으며, $S_1$은 각각 89%와 85%를 보였다. 음식물류 폐기물과 음폐수는 15일의 운전기간 동안 $S_1$은 각각 89%와 93%로 기질의 대부분이 분해되었으며 $k_1$은 각각 $0.195^{-1}$$0.184^{-1}$로 대단히 빠른 속도로 분해되었다. 폐활성 슬러지는 $k_1$ ($0.054day^{-1}$)의 속도로 28일 동안 분해되었으며 $S_1$은 80%를 보였다. 따라서 Multi k Analysis 방법을 이용해 유기성 폐자원의 분해 속도와 분해 양상을 토대로 최소 HRT를 산정할 수 있으며, 본 대상시료를 활용한 바이오가스화 시설의 최적 설계인자 도출이 가능하다.

키워드

유기성 폐자원;최종생분해도;회분식 실험;다중 분해속도;생분해성 유기물

참고문헌

  1. Ministry of Environment (ME), "National wastes generation and present status of disposal," ME (2013).
  2. Ministry of Environment (ME), "Statistics of sewerage," ME, Korea(2013).
  3. International Energy Agency (IEA), "Task 37 country reports," IEA Bioenergy(2014).
  4. Korea Statistical Information Service (KOSIS), "Livestock survey report," KOSIS, Korea(2013).
  5. Korea Statistical Information Service (KOSIS), "Status of livestock manure treatment in korean farms," KOSIS, Korea(2013).
  6. Ministry of Environment (ME), "Status of installation and operation for treatment facility of food waste," ME, Korea(2013).
  7. Korea Environment Institute (KEI), "A study on establishing management system for efficient organic waste-to-energy," KEI, Korea(2013).
  8. Owen, W. F., Stuckey, D. C., Healy, J. B., Young, L. Y. and McCarty, P. L., "Bioassay for monitoring biochemical methane potential and anaerobic toxicity," Water Res., 13, 485-492(1979). https://doi.org/10.1016/0043-1354(79)90043-5
  9. Buswell, A. M. and Mueller, H. F., "Mechanism of Methane Fermentation," J. Ind. Eng. Chem., 44(3), 550-552(1952). https://doi.org/10.1021/ie50507a033
  10. Kang, H. and Tritt, W. P., "Bestimmung der abbaubarkeit und substratum satzrraten von riderpansenhalt unter anaeroben bedingungen," Grundlagen der Land Technik, 40(2), 50-53(1990).
  11. Kang, H., Shin, K. S. and Richards, B., "Determination of Ultimate Biodegradability and Multiple Decay Rate Coefficients in Anaerobic Batch Degradation of Organic Wastes," J. Korean Soc. Environ. Eng., 27(5), 555-601(2005).
  12. Eugene, W. R., Rodger, B. B., Andrew, D. E. and Lenore, S. C., Standard methods for the examination of water and $wastewater^{TM}$, 22nd ed., APHA (with AWWA and Water Environ. Fed.), Hanover, pp. 4-1496(2012).
  13. Moon, S. Y., "Pretreatment Characteristics of Livestock Wastewater Using Anaerobic Filter," Chungnam National University, Korea, Master's thesis(2001).
  14. Shelton, D. R. and Tjedje, J. M., "General method for determining anaerobic biodegradation potential," Appl. Environ. Microbiol., 47, 850-857(1984).
  15. Raposo, F., Banks, C. J., Siegert, I., Heaven, S. and Borja, R., "Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests," Proc. Biochem., 41(6), 1444-1450(2006). https://doi.org/10.1016/j.procbio.2006.01.012
  16. Tchobanoglous, G., Theisen, H. and Vigil, S., "Integrated Solid Waste Management-Engineering Principles and Management Issues," McGraw Hill, New York, pp. 679-683(1993).
  17. Kang, H. and Weilang, P., "Ultimate Anaerobic Biodegradability of Some Agro-industrial Residues," Bioresour. Technol., 43, 107-111(1993). https://doi.org/10.1016/0960-8524(93)90168-B
  18. Kang, H., "A Feasibility study for renewable energy biogas from sewage sludge," Daejeon Environmental Technology Center, Korea(2008).
  19. McCarty, P. L., "Anaerobic waste treatment fundamentals, Presented at the Birmingham short course on design aspects of biological treatment," Inter. Assoc. Water Pol. Res., Birmingham, Unitied Kingdom(1964).
  20. Fabien, M., "An Introduction to Anaerobic Digestion of Organic Wastes," Remade Scotland, Scotland(2003).
  21. Cho, S. S., "A study on anaerobic digestion of biological and chemical sludge produced from municipal wastewater treatment for phosphorus removal," Chungnam National University, Korea, Master's thesis(2011)
  22. Heo, N. H., Lee, S. H. and Kim, B. K., "Biochemical Methane Potential and Biodegradability of Animal Manure and Cultivated Forage Crops at the Reclaimed Tideland," J. Korean Soc. New and Renewable Energy, 4(4), 56-64(2008).
  23. Rodriguez, A. A. and Lomas E. J., "Kinetic study of the anaerobic digestion of the solid fraction of piggery slurries," Bio. Bioener., 17, 435-443(1999). https://doi.org/10.1016/S0961-9534(99)00059-8
  24. Pham, C. H., Triolo, J. M., Cu, T. T. T., Pedersen, L. and Sommer, S. G., "Validation and recommendation of method to measure biogas production potential of animal manure," Asian Australias J. Anim. Sci., 26(6), 864-873(2013). https://doi.org/10.5713/ajas.2012.12623
  25. Kang, H., Jeong, J. H., Lee, H. M., Park, S. W, Cho, S. S. and Lim, S. A., "Anaerobic Biodegradability of Livestock Manure and Agro-industrial Biomass," HALLA Ind. Co. Ltd., Korea(2009).
  26. Kang, H., "Proximate Analysis of Food Waste Generated from Different Sources and Its Biogas Potential," Ins. of Environ. Biosystem in Chungnam National University(2006).
  27. Kang, H., "Improvement of Food Waste Treatment in Two Phase Anaerobic Digestion," Daejeon Environ. Technol. Center, Korea(2012).
  28. An, J. Y., "A Study on the Methane Generation Potential of Food Waste using BMP (Biochemical Methane Potential) Test," Yeungnam National University, Korea, Master's thesis (2012).
  29. Jeong, K. H., "Study on installation of effective and sustainable treatment facility (anaerobic digester) - To treat food waste and food waste leachate in Daejeon Metropolitan city," Chungnam National University, Korea, Master's thesis(2014)
  30. Gavala, H. N., Yenal, U., Skiadas, I. V., Westermann, P. and Ahring, B. K., "Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pretreatment at elevated temperature," Water Res., 37(19), 4561-4572(2003). https://doi.org/10.1016/S0043-1354(03)00401-9
  31. Shin, S. G., "Assessment of Methane Production Potential of Organic Wastes," Chungbuk National University, Korea, Master's thesis(2015).
  32. Feng, Y., Zhang, Y., Quan, X. and Chen, S., "Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron," Water Res., 52, 242-250(2014). https://doi.org/10.1016/j.watres.2013.10.072
  33. Kang, H., "Determination of optimum mixed ratio of livestock manure and agricultural biomass in anaerobic codigestion," Rural Res. Ins., Korea(2010).

피인용 문헌

  1. Assessment of Optimum Hydraulic Retention Time (HRT) for Maximum Biogas Production and Total Volatile Solid (TVS) Removal Efficiency of Semi-Continuously Fed and Mixed Reactor (SCFMR) Fed with Dairy Cow Manure vol.37, pp.12, 2015, https://doi.org/10.4491/KSEE.2015.37.12.696

과제정보

연구 과제 주관 기관 : 충남대학교