DOI QR코드

DOI QR Code

Diffusion Weighted Imaging Can Distinguish Benign from Malignant Mediastinal Tumors and Mass Lesions: Comparison with Positron Emission Tomography

  • Usuda, Katsuo (Department of Thoracic Surgery, Kanazawa Medical University) ;
  • Maeda, Sumiko (Department of Thoracic Surgery, Kanazawa Medical University) ;
  • Motono, Nozomu (Department of Thoracic Surgery, Kanazawa Medical University) ;
  • Ueno, Masakatsu (Department of Thoracic Surgery, Kanazawa Medical University) ;
  • Tanaka, Makoto (Department of Thoracic Surgery, Kanazawa Medical University) ;
  • Machida, Yuichiro (Department of Thoracic Surgery, Kanazawa Medical University) ;
  • Matoba, Munetaka (Department of Radiology, Kanazawa Medical University) ;
  • Watanabe, Naoto (Department of Radiology, Kanazawa Medical University) ;
  • Tonami, Hisao (Department of Radiology, Kanazawa Medical University) ;
  • Ueda, Yoshimichi (Department of Pathophysiological and Experimental Pathology, Kanazawa Medical University) ;
  • Sagawa, Motoyasu (Department of Thoracic Surgery, Kanazawa Medical University)
  • Published : 2015.10.06

Abstract

Background: Diffusion-weighted magnetic resonance imaging (DWI) makes it possible to detect malignant tumors based on the diffusion of water molecules. It is uncertain whether DWI is more useful than positron emission tomography-computed tomography (PET-CT) for distinguishing benign from malignant mediastinal tumors and mass lesions. Materials and Methods: Sixteen malignant mediastinal tumors (thymomas 7, thymic cancers 3, malignant lymphomas 3, malignant germ cell tumors 2, and thymic carcinoid 1) and 12 benign mediastinal tumors or mass lesions were assessed in this study. DWI and PET-CT were performed before biopsy or surgery. Results: The apparent diffusion coefficient (ADC) value ($1.51{\pm}0.46{\times}10^{-3}mm^2/sec$) of malignant mediastinal tumors was significantly lower than that ($2.96{\pm}0.86{\times}10^{-3}mm^2/sec$) of benign mediastinal tumors and mass lesions (P<0.0001). Maximum standardized uptake value (SUVmax) ($11.30{\pm}11.22$) of malignant mediastinal tumors was significantly higher than that ($2.53{\pm}3.92$) of benign mediastinal tumors and mass lesions (P=0.0159). Using the optimal cutoff value (OCV) $2.21{\times}10^{-3}mm^2/sec$ for ADC and 2.93 for SUVmax, the sensitivity (100%) by DWI was not significantly higher than that (93.8%) by PET-CT for malignant mediastinal tumors. The specificity (83.3%) by DWI was not significantly higher than that (66.7%) for benign mediastinal tumors and mass lesions. The accuracy (92.9%) by DWI was not significantly higher than that (82.1%) by PET-CT for mediastinal tumors and mass lesions. Conclusions: There was no significant difference between diagnostic capability of DWI and that of PET-CT for distinguishing mediastinal tumors and mass lesions. DWI is useful in distinguishing benign from malignant mediastinal tumors and mass lesions.

Keywords

Mediastinal tumor and mass lesion;diagnosis;magnetic resonance imaging;diffusion-weighted imaging

Acknowledgement

Supported by : Ministry of Education, Culture, Sports, Science and Technology

References

  1. Cheran SK, Nielsen ND, Patz EF (2004). False-negative findings for primary lung tumors on FDG positron emission tomography. Staging and prognostic implications. AJR, 182, 1129-32. https://doi.org/10.2214/ajr.182.5.1821129
  2. Could MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK (2001). Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions. A metaanalysis. JAMA, 285, 914-24. https://doi.org/10.1001/jama.285.7.914
  3. Fornasa F, Pinali L, Gasparini A, Toniolli E, Montemezzi S (2011). Diffusion-weighted magnetic resonance imaging in focal breast lesions. Analysis of 78 cases with pathological correlation. Radiol med, 116, 264-75. https://doi.org/10.1007/s11547-010-0602-4
  4. Goo JM, Im JG, Do KH, et al (2000). Pulmonary tuberculoma evaluated by means of FDG PET. Findings in 10 cases. Radiol, 216, 117-21. https://doi.org/10.1148/radiology.216.1.r00jl19117
  5. Gumustas S, Inan N, Sarisoy HT, et al (2011). Malignant versus benign mediastinal lesions. Quantitative assessment with diffusion weighted MR imaging. Eur Radiol, 21, 2255-60. https://doi.org/10.1007/s00330-011-2180-9
  6. Hayes SA, Plodkowski AJ, Ginsberg MS. (2014). Imaging of thoracic cavity tumors. Surg Oncol Clin N Am, 23, 709-33. https://doi.org/10.1016/j.soc.2014.06.005
  7. Koike N, Cho A, Nasu K, et al (2009). Role of diffusion-weighted magnetic resonance imaging in the differential diagnosis of focal hepatic lesions. World J gastroenterol, 15, 5805-12. https://doi.org/10.3748/wjg.15.5805
  8. Kubota K, Yamada S, Kondo T, et al (1996). PET imaging of primary mediastinal tumours. Br J Cancer, 73, 882-6. https://doi.org/10.1038/bjc.1996.157
  9. Kwee TC, Takahara T, Ochiai R, et al (2010). Complementary roles of whole-body diffusion-weighted MRI and 18F-FDG PET. The state of the art and potential application. J Nucl Med, 51, 1549-58. https://doi.org/10.2967/jnumed.109.073908
  10. Le Bihan D, Breton E, Lallemand D, et al (1988). Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiol, 168, 497-505. https://doi.org/10.1148/radiology.168.2.3393671
  11. Liu RS,, Yeh SH,, Huang MH, et al (1995). Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of thymoma. A preliminary report. Eur J Nucl Med, 22, 1402-7. https://doi.org/10.1007/BF01791148
  12. Liu Y, Bai RJ, Sun HR, Liu HD, Wang DH (2009). Diffusionweighted magnetic resonance imaging of uterine cervical cancer. J Comput Assist Tomogr, 33, 858-62. https://doi.org/10.1097/RCT.0b013e31819e93af
  13. Luzzi L, Campione A, Gorla A, et al (2009). Role of fluorineflurodeoxyglucose positron emission tomography/computed tomography in preoperative assessment of anterior mediastinal masses. Eur J Cardiothorac Surg, 36, 475-9. https://doi.org/10.1016/j.ejcts.2009.03.055
  14. Nakayama T, Yoshimitsu K, Irie H, et al (2004). Usefulness of the calculated apparent diffusion coefficient value in the differential diagnosis of retroperitoneal masses. J Magn Reson Imaging, 20, 735-42. https://doi.org/10.1002/jmri.20149
  15. Nomori H, Mori T, Ikeda K, et al (2008). Diffusion-weighted magnetic resonance imaging can be used in place of positron emission tomography for N staging of non-small cell lung cancer with fewer false-positive results. J Thoracic Cardiovasc Surg, 135, 816-22. https://doi.org/10.1016/j.jtcvs.2007.10.035
  16. Mori T, Nomori H, Ikeda K, et al (2008). Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses. Comparison with positron emission tomography. J Thoracic Oncol, 3, 358-64. https://doi.org/10.1097/JTO.0b013e318168d9ed
  17. Ohba Y, Nomori H, Mori T, et al (2009). Is diffusion-weighted magnetic resonance imaging superior to positron emission tomography with fludeoxyglucose F 18 in imaging non-small cell lung cancer?, J Thorac Cardiovasc Surg, 138, 439-445. https://doi.org/10.1016/j.jtcvs.2008.12.026
  18. Razek AA, Elmorsy A, Elshafey M, Elhadedy T, Hamza O (2009). Assessment of mediastinal tumors with diffusionweighted single-shot echo-planar MRI. J Magn Reson Imagin, 830, 535-40.
  19. Sasaki M, Kuwabara Y, Ichiya Y, et al (1999). Differential diagnosis of thymic tumors using a combination of $^{11}C$-methionine PET and FDG PET. J Nucl Med, 40, 1595-601.
  20. Satoh, Y, Ichikawa T, Motosui U, et al (2011). Diagnosis of peritoneal disseminatiom. Comparison of 18F-DDG PET/ CT, diffusion-weighted MRI, and contrast-enhanced MDCT. AJR, 196, 447-53. https://doi.org/10.2214/AJR.10.4687
  21. Schaarschmidt BM, Buchbender C, Nensa F, et al (2015). Correlation of the Apparent Diffusion Coefficient (ADC) with the Standardized Uptake Value (SUV) in Lymph Node Metastases of Non-Small Cell Lung Cancer (NSCLC) Patients Using Hybrid 18F-FDG PET/MRI. PLoS One, 10, eo116277.
  22. Seki S, Koyama H, Ohno Y, et al (2014). Diffusion-weighted MR imaging vs multi-detector row CT. Direct comparison of capability for assessment of management needs for anterior mediastinal solitary tumors. Eur J Radiol, 83, 835-42. https://doi.org/10.1016/j.ejrad.2014.01.005
  23. Sorensen AG, Buonanno FS, Gonzalez RG, et al (1996). Hyperacute stroke. Evaluation with combined multisection diffusion-weighted and hemodynamically weighted echoplanar MR imaging. Radiology, 199, 391-401. https://doi.org/10.1148/radiology.199.2.8668784
  24. Sung YM, Lee KS, Kim BT, et al (2006). 18F-FDG PET/CT of thymic epithelial tumors. Usefulness for distinguishing and staging tumor subgroups. J Nucl Med, 47, 1628-34.
  25. Szafer A, Zhong J, Gore JC (1995). Theoretical model for water diffusion in tissues. Magn Reson Med, 33, 697-712. https://doi.org/10.1002/mrm.1910330516
  26. Takahara T, Imai Y, Yamashita T, et al (2004). Diffusion weighted whole body imaging with background body signal suppression (DWIBS). Technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med, 22, 275-82.
  27. Tien RD, Felsberg GJ, Friedman H, Brown M, MacFall J (1994). MR imaging of high-grade cerebrel gliomas. Value of diffusion-weighted echoplanar plus sequences. AJR, 162, 671-7. https://doi.org/10.2214/ajr.162.3.8109520
  28. Tondo F, Saponaro A, Stecco A, et al (2011). Role of diffusionweighted imaging in the differential diagnosis of benign and malignant lesions of the chest-mediastinum. Radiol Med, 116, 720-33. https://doi.org/10.1007/s11547-011-0629-1
  29. Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC (2004). World health organization classification of tumours. Pathology and Genetics. Tumours of the lung, pleura, thymus and heart. IARC Press, Lyon.
  30. Usuda K, Sagawa M, Motono N, et al (2013). Advantages of diffusion-weighted imaging over positron emission tomography-computed tomography in assessment of hilar and mediastinal lymph node in lung cancer. Ann Surg Oncol, 20, 1676-83. https://doi.org/10.1245/s10434-012-2799-z
  31. Usuda K, Sagawa M, Motono N, et al (2014). Diagnostic performance of diffusion weighted imaging of malignant and benign pulmonary nodules and masses. Comparison with positron emission tomography. Asian Pac J Cancer Prev, 15, 4629-35. https://doi.org/10.7314/APJCP.2014.15.11.4629
  32. Usuda K, Zhao XT, Sagawa M, et al (2011). Diffusion-weighted imaging is superior to PET in the detection and nodal assessment of lung cancers. Ann Thorac Surg, 91, 1689-95. https://doi.org/10.1016/j.athoracsur.2011.02.037
  33. Wang J, Takashima S, Takayama F, et al (2001). Head and neck lesions. Characterization with diffusion-weighted echoplanar MR imaging. Radiol, 220, 621-30. https://doi.org/10.1148/radiol.2202010063
  34. Yamamura J, Salomon G, Buchert R, et al (2011). Magnetic resonance imaging of prostate cancer. Diffusion-weighted imaging in comparison with sextant biopsy. J Comput Assist Tomogr, 35, 223-8. https://doi.org/10.1097/RCT.0b013e3181fc5409
  35. Zhang J, Tehrani YM, Wang L, et al (2008). Renal masses. Characterization with diffusion-weighted MR imaging--a preliminary experience. Radiol, 247, 458-64. https://doi.org/10.1148/radiol.2472070823

Cited by

  1. A Thymic Hyperplasia Case without Suppressing on Chemical Shift Magnetic Resonance Imaging vol.2018, pp.2090-6870, 2018, https://doi.org/10.1155/2018/7305619