DOI QR코드

DOI QR Code

Three-dimensional Numerical Modeling of Water Temperature and Internal Waves in a Large Stratified Lake

대형 성층 호수의 수온과 내부파의 3차원 수치 모델링

  • Received : 2015.04.27
  • Accepted : 2015.06.16
  • Published : 2015.07.31

Abstract

The momentum and kinetic turbulent energy carried by the wind to a stratified lake lead to basin-scale motions, which provide a major driving force for vertical and horizontal mixing. A three-dimensional (3D) hydrodynamic model was applied to Lake Tahoe, located between California and Nevada, USA, to simulate the dominant basin-scale internal waves in the deep lake. The results demonstrated that the model well represents the temporal and vertical variations of water temperature that allows the internal waves to be energized correctly at the basin scale. Both the model and thermistor chain (TC) data identified the presence of Kelvin modes and Poincare mode internal waves. The lake was weakly stratified during the study period, and produced large amplitude (up to 60 m) of internal oscillations after several wind events and partial upwelling near the southwestern lake. The partial upwelling and followed coastal jets could be an important feature of basin-scale internal waves because they can cause re-suspension and horizontal transport of fine particles from nearshore to offshore. The internal wave dynamics can be also associated with the distributions of water quality variables such as dissolved oxygen and nutrients in the lake. Thus, the basin-scale internal waves and horizontal circulation processes need to be accurately modeled for the correct simulation of the dissolved and particulate contaminants, and biogeochemical processes in the lake.

Keywords

Internal wave;Lake Tahoe;Stratified lake;Upwelling and downwelling

References

  1. Abbott, M. R., Denman, K. L., Powell, T. M., Richerson, P. J., Richards, R. C., and Goldman, C. R. (1984). Mixing and the Dynamics of the Deep Chlorophyll Maximum in Lake Tahoe, Limnology and Oceanography, 29(4), pp. 862-878. https://doi.org/10.4319/lo.1984.29.4.0862
  2. Antenucci, J. P. and Imberger, J. (2001). Energetics of Long Internal Gravity Waves in Large Lakes, Limnology and Oceanography, 46(7), pp. 1760-1773. https://doi.org/10.4319/lo.2001.46.7.1760
  3. Antenucci, J. P., Imberger, J., and Saggio, A. (2000). Seasonal Evolution of the Basin-scale Internal Wave Field in a Large Stratified Lake, Limnology and Oceanography, 45(7), pp. 1621-1638. https://doi.org/10.4319/lo.2000.45.7.1621
  4. Bernhardt, J. and Kirillin, G. (2013). Seasonal Pattern of Rotation-affected Internal Seiches in a Small Temperate Lake, Limnology and Oceanography, 58(4), pp. 1344-1360. https://doi.org/10.4319/lo.2013.58.4.1344
  5. Csanady, G. T. (1975). Hydrodynamics of Large Lakes, Annual Review of Fluid Mechanics, 7, pp. 357-386. https://doi.org/10.1146/annurev.fl.07.010175.002041
  6. Casulli, V. and Cheng, R. T. (1992). Semi-implicit Finite Difference Methods for Three Dimensional Shallow Water Flow, International Journal for Numerical Methods in Fluids, 15, pp. 629-648. https://doi.org/10.1002/fld.1650150602
  7. Chung, S. W., Lee, H. S., and Jung, Y. R. (2008). Turbidity Modeling for a Negative Buoyant Density Flow in a Reservoir with Consideration of Multiple Particle Sizes, Journal of Korean Society on Water Environment, 24(3), pp. 365-377. [Korean Literature]
  8. Chung, S. W., Lee, H. S., Choi, J. K., and Ryu, I. G. (2009). Simulations of Thermal Stratification of Daecheong Reservoir using Three-dimensional ELCOM Model, Journal of Korean Society on Water Environment, 25(6), pp. 922-934. [Korean Literature]
  9. Chung, S. W., Lee, J. H., and Ryu, I. G. (2011). A Coupled Three-dimensional Hydrodynamic and Water Quality Modeling of Yongdam Reservoir using ELCOM-CAEDY, Journal of Korean Society on Water Environment, 27(4), pp. 413-424. [Korean Literature]
  10. Coats, R., Perez-Losada, J., Schladow, G., Richards, R., and Goldman, C. (2006). The Warming of Lake Tahoe, Climate Change, 76, pp. 121-148. https://doi.org/10.1007/s10584-005-9006-1
  11. Eckert, W., Imberger, J., and Saggio, A. (2000). Biogeochemical Evolution in Response to Physical Forcing in the Water Column of a Warm Monomictic Lake, Centre for Water Research manuscript ED 1205 AS.
  12. Fricker, P. D. and Nepf, H. M. (2000). Bathymetry, Stratification, and Internal Seiche Structure, Journal of Geophysical Research, 105(C6), pp. 14,237-14,251. https://doi.org/10.1029/2000JC900060
  13. Garret, C. and Munk, W. (1979). Internal Waves in the Ocean, Annual Review of Fluid Mechanics, 11, pp. 339-368. https://doi.org/10.1146/annurev.fl.11.010179.002011
  14. Gloor, M., Wuest, A., and Munnich, M. (1994). Benthic Boundary Mixing and Resuspension Induced by Internal Seiches, Hydrobiologia, 284, pp. 59-68. https://doi.org/10.1007/BF00005731
  15. Heaps, N. S. and Ramsbottom, A. E. (1966). Wind Effects on the Water in a Narrow Two-layered Lake, Philosophical Transactions A, 259, pp. 391-430. https://doi.org/10.1098/rsta.1966.0021
  16. Hodges, B. R., Imberger, J., Saggio, A., and Winters, K. B. (2000). Modeling Basin-scale Motions in a Stratified Lake, Limnology and Oceanography, 45(7), pp. 1603-1620. https://doi.org/10.4319/lo.2000.45.7.1603
  17. Hodges, B. R. and Dallimore, C. (2006). Estuary, Lake and Coastal Ocean Model: ELCOM, Users Guide, Centre for Water Research, University of Western Australia technical Publication.
  18. Horn, W., Mortimer, C. H., and Schwab, D. J. (1986). Wind-induced Internal Seiches in Lake Zurich Observed and Modeled, Limnology and Oceanography, 31(6), pp. 1232-1254. https://doi.org/10.4319/lo.1986.31.6.1232
  19. Hutter, K. (1984). Linear Gravity Waves, Kelvin Waves and Poincare Waves, Theoretical Modelling and Observations, in Hydrodynamics of Lakes, edited by K. Hutter, pp. 39-80, Springer-Verlag, New York.
  20. Idso, S. B. (1973). On the Concept of Lake Stability, Limnology and Oceanography, 18, pp. 681-683. https://doi.org/10.4319/lo.1973.18.4.0681
  21. Imberger, J. and Patterson, J. C. (1990). Physical Limnology, Advances in Applied Mechanics, 27, pp. 303-475.
  22. Jassby, A. D., Goldman, C. R., Reuter, J. E., and Richards, R. C. (1999). Origins and Scale Dependence of Temporal Variability in the Transparency of Lake Tahoe California-Nevada, Limnology and Oceanography, 44, pp. 282-294. https://doi.org/10.4319/lo.1999.44.2.0282
  23. Laval, B., Imberger, J., Hodges, B. R., and Stocker, R. (2003). Modeling Circulation in Lakes: Spatial and Temporal Variations, Limnology and Oceanography, 48, pp. 983-994. https://doi.org/10.4319/lo.2003.48.3.0983
  24. Lemckert, C. and Imberger, J. (1998). Turbulent Benthic Boundary Layer Mixing Events in Fresh Water Lakes, Physical Processes in Lakes and Ocean, Coastal and Estuarine Studies, V. 54, J. Imberger [ed.], American Geophysical Union, pp. 503-516.
  25. Lemmin, U. and Adamo, N. D. (1996). Summertime Winds and Direct Cyclonic Circulation: Observations from Lake Geneva, Annales Geophysicae, 14, pp. 1207-1220. https://doi.org/10.1007/s00585-996-1207-z
  26. Leonard, B. P. (1991). The Ultimate Conservative Difference Scheme Applied to Unsteady One-dimensional Advection, Computer Methods in Applied Mechanics and Engineering, 88, pp. 17-74. https://doi.org/10.1016/0045-7825(91)90232-U
  27. Martin, J. L. and McCutcheon, S. C. (1999). Hydrodynamics and Transport for Water Quality Modeling, CRC Press, Inc.
  28. Monismith, S. G. (1987). Modal Response of Reservoirs to Wind Stress, Journal of Hydraulic Engineering, 113(10), pp. 1290-1306. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:10(1290)
  29. Mortimer, C. H. (1974). Lake Hydrodynamics, Mitteilungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie, 20, pp. 124-197.
  30. Munnich, M. (1996). The Influence of Bottom Topography on Internal Seiches in Stratified Media, Dynamics of Atmospheres and Oceans, 23, pp. 257-266. https://doi.org/10.1016/0377-0265(95)00439-4
  31. Nakayama, K. and Imberger, J. (2010). Residual Circulation due to Internal Waves Shoaling on a Slope, Limnology and Oceanography, 55(3), pp. 1009-1023. https://doi.org/10.4319/lo.2010.55.3.1009
  32. Nishri, A., Imberger, J., Eckert, W., Ostrovosky, I., and Geifman, Y. (2000). The Physical Regime and the Respective Biogeochemical Processes in the Lower Water Mass of Lake Kinneret, Limnology and Oceanography, 45, pp. 972-981. https://doi.org/10.4319/lo.2000.45.4.0972
  33. Roberts, D. M. and Reuter, J. E. (2007). Lake Tahoe Total Maximum Daily Load, Technical Report CA-NV. California Regional Water Quality Control Board, Lahontan Region, CA, USA.
  34. Rueda, F. J., Schladow, S. G., and Palmarsson, S. O. (2003). Basin-scale Internal Wave Dynamics during a Winter Cooling Period in a Large Lake, Journal of Geophysical Research, 108(C3), pp. 42-1-42-16.
  35. Sahoo, G. B., Schladow, S. G., Reuter, J. E., Coats, R., Dettinger, M., Riverson, J., Wolfe, B., and Costa-Cabral, M. (2013). The Response of Lake Tahoe to Climate Change, Climate Change, 116, pp. 71-95. https://doi.org/10.1007/s10584-012-0600-8
  36. Schladow, S. G., Palmarsson, S. O., Steissberg, T. E., Hook, S. J., and Prata, F. J. (2004). An Extraordinary Upwelling Event in a Deep Thermally Stratified Lake, Geophysical Research Letters, 31, pp. L15504. https://doi.org/10.1029/2004GL020392
  37. Schwab, D. J. and Beletsky, D. (1998). Propagation of Kelvin Waves along Irregular Coastlines in Finite-difference Methods, Advances in Water Resources, 22(3), pp. 239-245. https://doi.org/10.1016/S0309-1708(98)00015-3
  38. Shimizu, K., Imberger, J., and Kumagai, M. (2007). Horizontal Structure and Excitation of Primary Motions in a Strongly Stratified Lake, Limnology and Oceanography, 52(6), pp. 2641-2655. https://doi.org/10.4319/lo.2007.52.6.2641
  39. Spigel, R. H. and Imberger, J. (1980). The Classification of Mixed-layer Dynamics in Lakes of Small to Medium Size, Journal of Physical Oceanography, 10, pp. 1104-1121. https://doi.org/10.1175/1520-0485(1980)010<1104:TCOMLD>2.0.CO;2
  40. Steissberg, T. E., Hook, S. J., and Schladow, S, G. (2005). Characterizing Partial Upwellings and Surface Circulation at Lake Tahoe, Californai-Nevada, USA with Thermal Infrared Images, Remote Sensing of Environment, 99, pp. 2-15. https://doi.org/10.1016/j.rse.2005.06.011
  41. Stevens, C., Lawrence, G., Hamblin, P., and Carmack, E. (1996). Wind Forcing of Inernal Waves in a Long Narrow Stratified Lake, Dynamics of Atmospheres and Oceans, 24, pp. 41-50. https://doi.org/10.1016/0377-0265(95)00409-2
  42. Strub, P. T. and Powell, T. M. (1986). Wind-driven Transport in Stratified Closed Basins: Direct versus Residual Circulations, Journal of Geophysical Research, 91, pp. 8497-8508. https://doi.org/10.1029/JC091iC07p08497
  43. Strub, P. T., Powell, T. M., and Abbott, M. R. (1984). Temperature and Transport Patterns in Lake Tahoe: Satellite Imagery, Field Data and a Dynamical Model, Verhandlungen des Internationalen Verein Limnologie, 22, pp. 112-118.
  44. Swift, J., Perez-Lodada J. Schladow, S. G., Reuter, J. E., Jassby, A. D., and Goldman, C. R. (2006). Water Clarity Modeling in Lake Tahoe: Linking Suspended Matter Characteristics to Secchi Depth, Aquatic Sciences, 68, pp. 1-15. https://doi.org/10.1007/s00027-005-0798-x