Test of a Multilayer Dose-Verification Gaseous Detector with Raster-Scan-Mode Proton Beams

  • Lee, Kyong Sei ;
  • Ahn, Sung Hwan ;
  • Han, Youngyih ;
  • Hong, Byungsik ;
  • Kim, Sang Yeol ;
  • Park, Sung Keun
  • Received : 2015.10.07
  • Accepted : 2015.10.20
  • Published : 2015.10.31


A multilayer gaseous detector has been developed for fast dose-verification measurements of raster-scan-mode therapeutic beams in particle therapy. The detector, which was constructed with eight thin parallel-plate ionization chambers (PPICs) and polymethyl methacrylate (PMMA) absorber plates, is closely tissue-equivalent in a beam's eye view. The gas-electron signals, collected on the strips and pad arrays of each PPIC, were amplified and processed with a continuous charge.integration mode. The detector was tested with 190-MeV raster-scan-mode beams that were provided by the Proton Therapy Facility at Samsung Medical Center, Seoul, South Korea. The detector responses of the PPICs for a 190-MeV raster-scan-mode proton beam agreed well with the dose data, measured using a 2D ionization chamber array (Octavius model, PTW). Furthermore, in this study it was confirmed that the detector simultaneously tracked the doses induced at the PPICs by the fast-oscillating beam, with a scanning speed of 2 m s-1. Thus, it is anticipated that the present detector, composed of thin PPICs and operating in charge.integration mode, will allow medical scientists to perform reliable fast dose-verification measurements for typical dynamic mode therapeutic beams.


Particle therapy;Parallel plate ionization chambers;Dose verification;Raster-scan-mode proton beam


  1. C. Talamonti et al., Nucl. Instr. Meth. A 612 (2010) 571.
  2. W. Wagner, M. Seidel, E. Morenzoni, F. Groeschel, M. Wohlmuther and M. Daum, Nucl. Instr. Meth. A 600 (2009) 5.
  3. T. Bortfeld, Phys. Med. Biol. 51 (2006) R363.
  4. H. Paganetti, H. Jiang, K. Parodi, R. Slopsema and M. Engelsman, Phys. Med. Biol. 53 (2008) 4825.
  5. H. Paganetti, H. Jiang, J. A. Adams, G. T. Chen and E. Rietzel, Int. J. Radiat. Oncology Biol. Phys. 60 (2004) 942.
  6. 'Technologies for delivery of proton and ion beams for radiotherapy', H. Owen, D. Holder, J. Alonso and R. Mackay, arXiv:1310.0237v1 Oct. 2013.
  7. T. Inaniwa, T. Furukawa, S. Sato, T. Tomitani, M. Kobayashi, S. Minohara, K. Noda and T. Kanai, Nucl. Instr. Meth. B 266 (2007) 2194.
  8. Y. Futami, T. Kanai, M. Fujita, H. Tomura, A. Higashi, N. Matsufuji, N. Miyahara, M. Endo and K. Kawachi, Nucl. Instr. Meth. A 430 (1999) 143.
  9. K. Nada et al., J. Radiat. Res. 48: Suppl. (2007) A43.
  10. M. Torikoshi, K. Noda, E. Takada, T. Kanai, S. Yamada, H. Ogawa, K. Okumura, K. Narita, K. Ueda and M. Mizobata, Nucl. Instr. Meth. A 435 (1999) 326.
  11. S. Lee, B. Hong, K. S. Lee, B. Mulilo and S. K. Park, Nucl. Instr. Meth. A 724 (2013) 6.
  12. M. Hirschberg, R. Beckmann, U. Brandenburg, H. Bruckmann and K. Wick, IEEE Trans. Nucl. Sci. 39 (1992) 511.
  13. The standard composition ratios of the constituent elements of soft tissue are found at
  14. K. S. Lee, B. Hong, S. K. Park and S. Y. Kim, J. Korean Phys. Soc. 65 (2014) 1367.
  15. K. S. Lee, B. Hong, K. Lee, S. K. Park and J. Yu, J. Korean Phys. Soc. 64 (2014) 958.
  16. K. S. Lee, B. Hong, G. Jhang, M. Jo, E. Ju, B. S. Moon, S. K. Park, H. B. Rhee, H. H. Shim and K. S. Sim, J. Korean Phys. Soc. 59 (2011) 2002.
  17. K. S. Lee, B. Hong, K. Lee, G. Jhang, E. Ju, C. Kim, S. K. Park, H. B. Rhee, H. H. Shim and K. S. Sim, J. Korean Phys. Soc. 58 (2011) 706.
  18. K. S. Lee, B. Hong, S. K. Park and K. S. Sim, J. Korean Phys. Soc. 58 (2011) 15.
  19. J. Allison et al., IEEE Trans. Nucl. Sci. 53 (2006) 270.
  20. S. Agostinelli et al., Nucl. Instr. Meth. A 506 (2003) 250.


Supported by : National Research Foundation of Korea