DOI QR코드

DOI QR Code

토착박테리아의 중금속 적응효과와 직접산화작용에 의한 폐광석으로부터 유용금속 용출

김봉주;조강희;최낙철;박천영
Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young

  • 투고 : 2015.04.15
  • 심사 : 2015.09.11
  • 발행 : 2015.09.30

초록

폐광산에 방치되어 있는 폐광석으로부터 유용금속이온을 그 지역 토착박테리아를 이용하여 효과적으로 용출시키고자 하였다. 토착호산성박테리아를 중금속 이온에 내성이 형성될 수 있도록 중금속 이온에 주기적으로 반복 적응시켰다. 그 결과 적응실험이 진행될수록 성장-배양액의 pH가 더 안정적으로 감소하였다. $CuSO_4{\cdot}5H_2O$에 9주와 12주 동안 적응시킨 박테리아를 이용하여 42일 동안 미생물용출을 수행한 결과, 용출-배양액의 pH는 적응 횟수에 비례하여 더 빠르게 감소하였다. 황동석과 Cu 함량이 고성 폐광석에 비하여 상대적으로 적게 포함된 연화 폐광석에서 더 많은 박테리아들이 부착하였고, 또한 Cu와 Fe 함량은 고성 박테리아 시료(각각의 용출률 = 66.77%와 21.83%)에 비하여 연화 박테리아 시료(각각의 용출률 = 92.79%와 55.88%)에서 더 많이 용출되었다. 따라서 중금속으로 오염된 광산에 오랫동안 서식한 토착호산성 박테리아를 이용한다면 또한 이 박테리아들을 목적중금속 이온이 포함된 성장-배양액에 계속하여 주기적으로 적응시킨다면, 폐광석으로부터 유용금속이온을 더 효과적으로 용출시킬 수 있을 것으로 확신한다.

키워드

폐광석;토착호산성박테리아;적응;미생물용출

참고문헌

  1. Astudillo, C. and Acevedo, F. (2008) Adaptation of Sulfolobus metallicus to high pulp densities in the biooxidation of a flotation gold concentrate. Hydrometallurgy, 92, 11-15. https://doi.org/10.1016/j.hydromet.2008.02.003
  2. Attia, Y.A. and Elzeky, M. (1989) Bioleaching of gold pyrite tailings with adapted bacteria. Hydrometallurgy, 22, 291-300. https://doi.org/10.1016/0304-386X(89)90026-1
  3. Attia, Y.A. and El-Zeky, M. (1990) Effects of galvanic interactions of sulfides on extraction of precious metals from refractory complex sulfides by bioleaching. International Journal of Mineral Processing, 30, 99-111. https://doi.org/10.1016/0301-7516(90)90068-A
  4. Attia, Y.A. and El-Zeky, M.A. (1990) Bioleaching of non-ferrous sulfides with adapted thiophillic bacteria. The Chemical Engineering Journal, 44, B31-B40. https://doi.org/10.1016/0300-9467(90)80064-J
  5. Baker, B.J. and Bafield, J.F. (2003) Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44, 139-152. https://doi.org/10.1016/S0168-6496(03)00028-X
  6. Barr, D.W., Jordan, M.A., Norris, P.R., and Phillips, C.V. (1992) An investigation into bacterial cell, ferrous iron, pH and Eh interactions during thermophilic leaching of copper concentrates. Minerals Engineering, 5, 557-567. https://doi.org/10.1016/0892-6875(92)90234-Z
  7. Das, A., Jayant, M., Modak, M., and Natarajan, K.A. (1998) Surface chemical studies of Thiobacillus ferrooxidans with reference to copper tolerance. Antonie van Leeuwenhoek, 73, 215-222. https://doi.org/10.1023/A:1000858525755
  8. Das, A., Modak, J.M., and Natarajan, K.A. (1997) Studies on multi-metal ion tolerance of Thiobacillus ferrooxidans. Minerals Engineering, 10, 742-749.
  9. Dopson, M., Baker-Austin, C., Koppineedi, P.R., and Bond, P.L. (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology, 149, 1959-1970. https://doi.org/10.1099/mic.0.26296-0
  10. Elzeky, M. and Attia, Y.A. (1995) Effect of bacterial adaptation on kinetics and mechanisms of bioleaching ferrous sulfides. The Chemical Engineering Journal, 56, B115-B124.
  11. Ferroni, G.D., Leduc, L.G., and Todd, M. (1986) Isolation and temperature characterization of psychrotrophic strains of Thiobacillus ferrooxidans from the environment of a uranium mine. J. Gen. Appl. Microbiol., 32,169-175. https://doi.org/10.2323/jgam.32.169
  12. Fowler, T.K. and Crundwell, F.K. (1999) The leaching of zinc sulfide by Thiobacillus ferrooxidans : bacterial oxidation of the sulfur product layer increases the rate of dissolution at high concentration of ferrous ions. Applied and Environmental Microbiology, 65, 5285-5292.
  13. Gantayat, B.P., Rath, P.C., Paramguru, R.K., and Rao, S.B. (2000) Galvanic interaction between chalcopyrite and manganese dioxide in sulfuric acid medium. Metallurgical and Materials Transactions B, 31B, 55-61.
  14. Haghshenas, D.F., Alamdari, E.K., Torkmahalleh, M.A., Bonakdarpour, B., and Nasernejad, B. (2009) Adaptation of Acidithiobacillus ferrooxidans to high grade sphalerite concentrate. Minerals Engineering, 22, 1299-1306. https://doi.org/10.1016/j.mineng.2009.07.011
  15. Han, O.H., Park, C.Y., and Cho, K.H. (2010) The Characteristic of Bioleaching for Chalcopyrite Concentrate Using Indigenous Acidophilic Bacteria - Column Leaching at Room Temperature -. Journal of the Korean Society for Geosystem Engineering, 47, 678-689.
  16. Jones, R. A., Koval, S. F., and Nesbitt, H. W. (2003) Surface alteration of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans. Geochimica et Cosmochimica Acta, 67, 955-965. https://doi.org/10.1016/S0016-7037(02)00996-1
  17. Kaewkannetra, P., Garcia-Garcia, F.J., and Chin, T.Y. (2009) Bioleaching of zinc from gold ores using Acidithiobacillus ferrooxidans. Metallurgy, 16, 368-374.
  18. Kai, T., Nishi, M., and Takahashi, T. (1995) Adaptation of Thiobacillus ferrooxidans to nickel ion and bacterial oxidation of nickel sulfide. Biotechnology Letters, 17, 229-232. https://doi.org/10.1007/BF00127994
  19. Karimi, G.R., Rowson, N.A., and Hewitt, C.J. (2010) Bioleaching of copper via iron oxidation from chalcopyrite at elevated temperature. Food and Bioproducts Processing, 88, 21-25. https://doi.org/10.1016/j.fbp.2009.06.005
  20. Kim, B.J., Wi, D.W., Baik, K.S., Seong, C.N., Choi, N.C., and Park, C.Y. (2012) Identification of Indigenous Acidophilic Bacteria by Polymerase Chain Reaction and 16S rRNA Sequences. Journal of the Korean Society for Geosystem Engineering, 49, 507-520.
  21. Kim, B.J., Cho, K.H., Choi, N.C., and Park C.Y. (2014) The Characteristic Dissolution of Valuable Metals from Mine-Waste Rock by Heap Bioleaching, and the Recovery of Metallic Copper Powder with Fe Removal and Electrowinning. Journal of the Mineralogical Society of Korea, 27, 207-222. https://doi.org/10.9727/jmsk.2014.27.4.207
  22. Ko, M.S., Park, H.S., and Lee, J.U. (2009) Bioleaching of Heavy Metals from Tailings in Abandoned Au-Ag Mines Using Sulfur-oxidizing Bacterium Acidithiobacillus thiooxidans. Journal of the Korean Society for Geosystem Engineering, 46, 239-251.
  23. Li, H.M., and Ke, J.J. (2001) Influence of $Cu^{2+}$ and $Mg^{2+}$ on the growth and activity of Ni2+ adapted Thiobacillus ferrooxidans. Minerals Engineering, 14, 113-116. https://doi.org/10.1016/S0892-6875(00)00165-5
  24. Liu, H., Gu, G., and Xu, Y. (2011) Surface properties of pyrite in the course of bioleaching by pure culture of Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy, 108, 143-148. https://doi.org/10.1016/j.hydromet.2011.03.010
  25. Mason, L.J. and Rice, N.M. (2002) The adaptation of Thiobacillus ferrooxidans for the treatment of nickel- iron sulphide concentrate. Minerals Engineering, 15, 795-808. https://doi.org/10.1016/S0892-6875(02)00118-8
  26. Mehta, A.P. and Murr, L.E. (1983) Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides. Hydrometallurgy, 9, 235-256. https://doi.org/10.1016/0304-386X(83)90025-7
  27. Mousavi, S.M., Taghmaei, S., Vossoughi, M., Jafari, A., and Hoseini, S.A. (2005) Comparison of bioleaching ability of two native mesophilic and thermophilic bacteria on copper recovery from chalcopyrite concentrate in an airlift bioreactor. Hydrometallurgy, 80, 139-144. https://doi.org/10.1016/j.hydromet.2005.08.001
  28. Natarajan, K.A. and Iwasaki, I. (1983) Role of galvanic interactions in the bioleaching of Duluth gabbro copper-nickel sulfides. Separation Science and Technology, 18, 1095-1111. https://doi.org/10.1080/01496398308059919
  29. Natarajan, K.A., Sudeesha, K., and Ramananda Rao, G. (1994) Stability of copper tolerance in Thiobacillus ferrooxidans. Antonie van Leeuwenhoek, 66, 303-306. https://doi.org/10.1007/BF00882764
  30. Rawlings, D. and Kusno, T., (1994) Molecular genetics of Thiobacillus ferrooxidans. Microbiological Reviews, 58, 39-55.
  31. Park, C.Y., Kim, S.O., and Kim, B.J. (2010) The Characteristic of Selective Attachment and Bioleaching for Pyrite Using Indigenous Acidophilic Bacteria at 42℃. Korea Society of Economic and Environmental Geology, 43, 109-121.
  32. Park, C.Y., Cheong, K.H., Kim, K.M., Hong, Y.U., and Cho, K.H. (2009) Bioleaching of Pyrite from the Abandoned Hwasun Coal Mine Drainage using Indigenous Acidophilic Bacteria. Journal of the Korean Society for Geosystem Engineering, 46, 521-535.
  33. Park, C.Y., Cheong, K.H., and Kim, B.J. (2010) The Bioleaching of Sphalerite by Moderately Thermophilic Bacteria. Korea Society of Economic and Environmental Geology, 43, 573-587.
  34. Park, C.Y., Cheong, K.H., Kim, B.J., Wi, H., and Lee, Y.G. (2011) The Corrosion and the Enhance of Bioleaching for Galena by Moderate Thermophilic Indigenous Bacteria. Journal of the Korean Society for Geosystem Engineering, 48, 11-24.
  35. Rojas-Chapana, J.A., Bartels, C.C., Pohlmann, L., and Tributsch, H. (1998) Co-operative leaching and chemotaxis of Thiobacillus studied with spherical sulfur/ sulfide substrates. Process Biochemistry, 33, 239-248. https://doi.org/10.1016/S0032-9592(97)00059-9
  36. Sadler, W.R. and Trudinger, P.A. (1967) The inhibition of microorganisms by heavy metals. Mineralium Deposita, 2, 158-168.
  37. Sanmugasunderam, V. and Branion, R.M.R. (1985) A growth model for the continuous microbiological leaching of a zinc sulfide concentrate by Thiobacillus ferrooxidans. Biotechnology and Bioengineering, 27, 1173-1184. https://doi.org/10.1002/bit.260270812
  38. Shahverdi, A.R., Yazdi, M.T., Oliazadeh, M., and Darebidi, M.H. (2001) Biooxidation of mouth refractory gold-bearing concentrate by an adapted Thiobacullus ferrooxidans. J. Sci. I. R. Iran, 12, 209-212.
  39. Shi, S. and Fang, Z. (2005) Bioleaching of marmatite flotation concentrate by adapted mixed mesoacidophilic cultures in an air-lift reactor. International Journal of Mineral Processing, 76, 3-12. https://doi.org/10.1016/j.minpro.2004.05.005
  40. Shi, S.Y., Fang, Z.H., and Ni, J.R. (2006) Comparative study on the bioleaching of zinc sulphides. Process Biochemistry, 41, 438-446. https://doi.org/10.1016/j.procbio.2005.07.008
  41. Shi, S-Y. and Fang, Z-H. (2004) Bioleaching of marmatite flotation concentrate by Acidothiobacillus ferrooxidans. Hydrometallurgy, 75, 1-10. https://doi.org/10.1016/j.hydromet.2004.05.008
  42. Silver, S. and Phung, L.T. (1996) Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50, 753-789. https://doi.org/10.1146/annurev.micro.50.1.753
  43. Stackebrandt, E. and Goebel, B.M. (1994) Taxonomic note: a place for DNA-DNA Reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology, 44, 846-849.
  44. Tuovinen, O.H., Niemela, S.I., and Gyllenberg, H.G. (1971) Tolerance of Thiobacillus ferrooxidans to some metals. Antonie van Leeuwenhoek, 37, 489-496. https://doi.org/10.1007/BF02218519
  45. Veglio, F., Quaresima, R., Fornari, P., and Ubaldini, S. (2003) Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning. Waste Management, 23, 245-252. https://doi.org/10.1016/S0956-053X(02)00157-5
  46. Wei, Y., Zhong, K., Adamov, E.V., and Smith, R.W. (1997) Semi-continuous biooxidation of the Chongyang refractory gold ore. Minerals Engineering, 10, 577-583. https://doi.org/10.1016/S0892-6875(97)00037-X
  47. Woese, C.R. (1987) Bacterial evolution. Microbiological Reviews, 51, 221-271.
  48. Xia, L., Liu, X., Zeng, J., Yin, C., Gao, J., Liu, J., and Qiu, G. (2008) Mechanism of enhanced bioleaching efficiency of Acidithiobacillus ferrooxidans after adaptation with chalcopyrite. Hydrometallurgy, 92, 95-101. https://doi.org/10.1016/j.hydromet.2008.01.002

피인용 문헌

  1. Experiences and Future Challenges of Bioleaching Research in South Korea vol.6, pp.4, 2016, https://doi.org/10.3390/min6040128

과제정보

연구 과제 주관 기관 : 조선대학교