토착박테리아의 중금속 적응효과와 직접산화작용에 의한 폐광석으로부터 유용금속 용출

Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young

  • 투고 : 2015.04.15
  • 심사 : 2015.09.11
  • 발행 : 2015.09.30


폐광산에 방치되어 있는 폐광석으로부터 유용금속이온을 그 지역 토착박테리아를 이용하여 효과적으로 용출시키고자 하였다. 토착호산성박테리아를 중금속 이온에 내성이 형성될 수 있도록 중금속 이온에 주기적으로 반복 적응시켰다. 그 결과 적응실험이 진행될수록 성장-배양액의 pH가 더 안정적으로 감소하였다. $CuSO_4{\cdot}5H_2O$에 9주와 12주 동안 적응시킨 박테리아를 이용하여 42일 동안 미생물용출을 수행한 결과, 용출-배양액의 pH는 적응 횟수에 비례하여 더 빠르게 감소하였다. 황동석과 Cu 함량이 고성 폐광석에 비하여 상대적으로 적게 포함된 연화 폐광석에서 더 많은 박테리아들이 부착하였고, 또한 Cu와 Fe 함량은 고성 박테리아 시료(각각의 용출률 = 66.77%와 21.83%)에 비하여 연화 박테리아 시료(각각의 용출률 = 92.79%와 55.88%)에서 더 많이 용출되었다. 따라서 중금속으로 오염된 광산에 오랫동안 서식한 토착호산성 박테리아를 이용한다면 또한 이 박테리아들을 목적중금속 이온이 포함된 성장-배양액에 계속하여 주기적으로 적응시킨다면, 폐광석으로부터 유용금속이온을 더 효과적으로 용출시킬 수 있을 것으로 확신한다.




  1. Astudillo, C. and Acevedo, F. (2008) Adaptation of Sulfolobus metallicus to high pulp densities in the biooxidation of a flotation gold concentrate. Hydrometallurgy, 92, 11-15.
  2. Attia, Y.A. and Elzeky, M. (1989) Bioleaching of gold pyrite tailings with adapted bacteria. Hydrometallurgy, 22, 291-300.
  3. Attia, Y.A. and El-Zeky, M. (1990) Effects of galvanic interactions of sulfides on extraction of precious metals from refractory complex sulfides by bioleaching. International Journal of Mineral Processing, 30, 99-111.
  4. Attia, Y.A. and El-Zeky, M.A. (1990) Bioleaching of non-ferrous sulfides with adapted thiophillic bacteria. The Chemical Engineering Journal, 44, B31-B40.
  5. Baker, B.J. and Bafield, J.F. (2003) Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44, 139-152.
  6. Barr, D.W., Jordan, M.A., Norris, P.R., and Phillips, C.V. (1992) An investigation into bacterial cell, ferrous iron, pH and Eh interactions during thermophilic leaching of copper concentrates. Minerals Engineering, 5, 557-567.
  7. Das, A., Jayant, M., Modak, M., and Natarajan, K.A. (1998) Surface chemical studies of Thiobacillus ferrooxidans with reference to copper tolerance. Antonie van Leeuwenhoek, 73, 215-222.
  8. Das, A., Modak, J.M., and Natarajan, K.A. (1997) Studies on multi-metal ion tolerance of Thiobacillus ferrooxidans. Minerals Engineering, 10, 742-749.
  9. Dopson, M., Baker-Austin, C., Koppineedi, P.R., and Bond, P.L. (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology, 149, 1959-1970.
  10. Elzeky, M. and Attia, Y.A. (1995) Effect of bacterial adaptation on kinetics and mechanisms of bioleaching ferrous sulfides. The Chemical Engineering Journal, 56, B115-B124.
  11. Ferroni, G.D., Leduc, L.G., and Todd, M. (1986) Isolation and temperature characterization of psychrotrophic strains of Thiobacillus ferrooxidans from the environment of a uranium mine. J. Gen. Appl. Microbiol., 32,169-175.
  12. Fowler, T.K. and Crundwell, F.K. (1999) The leaching of zinc sulfide by Thiobacillus ferrooxidans : bacterial oxidation of the sulfur product layer increases the rate of dissolution at high concentration of ferrous ions. Applied and Environmental Microbiology, 65, 5285-5292.
  13. Gantayat, B.P., Rath, P.C., Paramguru, R.K., and Rao, S.B. (2000) Galvanic interaction between chalcopyrite and manganese dioxide in sulfuric acid medium. Metallurgical and Materials Transactions B, 31B, 55-61.
  14. Haghshenas, D.F., Alamdari, E.K., Torkmahalleh, M.A., Bonakdarpour, B., and Nasernejad, B. (2009) Adaptation of Acidithiobacillus ferrooxidans to high grade sphalerite concentrate. Minerals Engineering, 22, 1299-1306.
  15. Han, O.H., Park, C.Y., and Cho, K.H. (2010) The Characteristic of Bioleaching for Chalcopyrite Concentrate Using Indigenous Acidophilic Bacteria - Column Leaching at Room Temperature -. Journal of the Korean Society for Geosystem Engineering, 47, 678-689.
  16. Jones, R. A., Koval, S. F., and Nesbitt, H. W. (2003) Surface alteration of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans. Geochimica et Cosmochimica Acta, 67, 955-965.
  17. Kaewkannetra, P., Garcia-Garcia, F.J., and Chin, T.Y. (2009) Bioleaching of zinc from gold ores using Acidithiobacillus ferrooxidans. Metallurgy, 16, 368-374.
  18. Kai, T., Nishi, M., and Takahashi, T. (1995) Adaptation of Thiobacillus ferrooxidans to nickel ion and bacterial oxidation of nickel sulfide. Biotechnology Letters, 17, 229-232.
  19. Karimi, G.R., Rowson, N.A., and Hewitt, C.J. (2010) Bioleaching of copper via iron oxidation from chalcopyrite at elevated temperature. Food and Bioproducts Processing, 88, 21-25.
  20. Kim, B.J., Wi, D.W., Baik, K.S., Seong, C.N., Choi, N.C., and Park, C.Y. (2012) Identification of Indigenous Acidophilic Bacteria by Polymerase Chain Reaction and 16S rRNA Sequences. Journal of the Korean Society for Geosystem Engineering, 49, 507-520.
  21. Kim, B.J., Cho, K.H., Choi, N.C., and Park C.Y. (2014) The Characteristic Dissolution of Valuable Metals from Mine-Waste Rock by Heap Bioleaching, and the Recovery of Metallic Copper Powder with Fe Removal and Electrowinning. Journal of the Mineralogical Society of Korea, 27, 207-222.
  22. Ko, M.S., Park, H.S., and Lee, J.U. (2009) Bioleaching of Heavy Metals from Tailings in Abandoned Au-Ag Mines Using Sulfur-oxidizing Bacterium Acidithiobacillus thiooxidans. Journal of the Korean Society for Geosystem Engineering, 46, 239-251.
  23. Li, H.M., and Ke, J.J. (2001) Influence of $Cu^{2+}$ and $Mg^{2+}$ on the growth and activity of Ni2+ adapted Thiobacillus ferrooxidans. Minerals Engineering, 14, 113-116.
  24. Liu, H., Gu, G., and Xu, Y. (2011) Surface properties of pyrite in the course of bioleaching by pure culture of Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy, 108, 143-148.
  25. Mason, L.J. and Rice, N.M. (2002) The adaptation of Thiobacillus ferrooxidans for the treatment of nickel- iron sulphide concentrate. Minerals Engineering, 15, 795-808.
  26. Mehta, A.P. and Murr, L.E. (1983) Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides. Hydrometallurgy, 9, 235-256.
  27. Mousavi, S.M., Taghmaei, S., Vossoughi, M., Jafari, A., and Hoseini, S.A. (2005) Comparison of bioleaching ability of two native mesophilic and thermophilic bacteria on copper recovery from chalcopyrite concentrate in an airlift bioreactor. Hydrometallurgy, 80, 139-144.
  28. Natarajan, K.A. and Iwasaki, I. (1983) Role of galvanic interactions in the bioleaching of Duluth gabbro copper-nickel sulfides. Separation Science and Technology, 18, 1095-1111.
  29. Natarajan, K.A., Sudeesha, K., and Ramananda Rao, G. (1994) Stability of copper tolerance in Thiobacillus ferrooxidans. Antonie van Leeuwenhoek, 66, 303-306.
  30. Rawlings, D. and Kusno, T., (1994) Molecular genetics of Thiobacillus ferrooxidans. Microbiological Reviews, 58, 39-55.
  31. Park, C.Y., Kim, S.O., and Kim, B.J. (2010) The Characteristic of Selective Attachment and Bioleaching for Pyrite Using Indigenous Acidophilic Bacteria at 42℃. Korea Society of Economic and Environmental Geology, 43, 109-121.
  32. Park, C.Y., Cheong, K.H., Kim, K.M., Hong, Y.U., and Cho, K.H. (2009) Bioleaching of Pyrite from the Abandoned Hwasun Coal Mine Drainage using Indigenous Acidophilic Bacteria. Journal of the Korean Society for Geosystem Engineering, 46, 521-535.
  33. Park, C.Y., Cheong, K.H., and Kim, B.J. (2010) The Bioleaching of Sphalerite by Moderately Thermophilic Bacteria. Korea Society of Economic and Environmental Geology, 43, 573-587.
  34. Park, C.Y., Cheong, K.H., Kim, B.J., Wi, H., and Lee, Y.G. (2011) The Corrosion and the Enhance of Bioleaching for Galena by Moderate Thermophilic Indigenous Bacteria. Journal of the Korean Society for Geosystem Engineering, 48, 11-24.
  35. Rojas-Chapana, J.A., Bartels, C.C., Pohlmann, L., and Tributsch, H. (1998) Co-operative leaching and chemotaxis of Thiobacillus studied with spherical sulfur/ sulfide substrates. Process Biochemistry, 33, 239-248.
  36. Sadler, W.R. and Trudinger, P.A. (1967) The inhibition of microorganisms by heavy metals. Mineralium Deposita, 2, 158-168.
  37. Sanmugasunderam, V. and Branion, R.M.R. (1985) A growth model for the continuous microbiological leaching of a zinc sulfide concentrate by Thiobacillus ferrooxidans. Biotechnology and Bioengineering, 27, 1173-1184.
  38. Shahverdi, A.R., Yazdi, M.T., Oliazadeh, M., and Darebidi, M.H. (2001) Biooxidation of mouth refractory gold-bearing concentrate by an adapted Thiobacullus ferrooxidans. J. Sci. I. R. Iran, 12, 209-212.
  39. Shi, S. and Fang, Z. (2005) Bioleaching of marmatite flotation concentrate by adapted mixed mesoacidophilic cultures in an air-lift reactor. International Journal of Mineral Processing, 76, 3-12.
  40. Shi, S.Y., Fang, Z.H., and Ni, J.R. (2006) Comparative study on the bioleaching of zinc sulphides. Process Biochemistry, 41, 438-446.
  41. Shi, S-Y. and Fang, Z-H. (2004) Bioleaching of marmatite flotation concentrate by Acidothiobacillus ferrooxidans. Hydrometallurgy, 75, 1-10.
  42. Silver, S. and Phung, L.T. (1996) Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50, 753-789.
  43. Stackebrandt, E. and Goebel, B.M. (1994) Taxonomic note: a place for DNA-DNA Reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology, 44, 846-849.
  44. Tuovinen, O.H., Niemela, S.I., and Gyllenberg, H.G. (1971) Tolerance of Thiobacillus ferrooxidans to some metals. Antonie van Leeuwenhoek, 37, 489-496.
  45. Veglio, F., Quaresima, R., Fornari, P., and Ubaldini, S. (2003) Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning. Waste Management, 23, 245-252.
  46. Wei, Y., Zhong, K., Adamov, E.V., and Smith, R.W. (1997) Semi-continuous biooxidation of the Chongyang refractory gold ore. Minerals Engineering, 10, 577-583.
  47. Woese, C.R. (1987) Bacterial evolution. Microbiological Reviews, 51, 221-271.
  48. Xia, L., Liu, X., Zeng, J., Yin, C., Gao, J., Liu, J., and Qiu, G. (2008) Mechanism of enhanced bioleaching efficiency of Acidithiobacillus ferrooxidans after adaptation with chalcopyrite. Hydrometallurgy, 92, 95-101.

피인용 문헌

  1. Experiences and Future Challenges of Bioleaching Research in South Korea vol.6, pp.4, 2016,


연구 과제 주관 기관 : 조선대학교