팽이버섯 수확후배지 첨가가 수수 사일리지의 in vitro 반추위 발효특성 및 소화율에 미치는 영향

DOI QR코드

DOI QR Code

문여황;장선식;김언태;조웅기;이신자;이성실;조수정
Moon, Yea Hwang;Chang, Sun Sik;Kim, Eun Tae;Cho, Woong Gi;Lee, Shin Ja;Lee, Sung Sil;Cho, Soo Jeong

  • 투고 : 2015.08.03
  • 심사 : 2015.09.30
  • 발행 : 2015.09.30

초록

본 시험은 팽이버섯 수확후배지 첨가비율(20, 40, 60%)에 따라 제조된 사일리지를 in vitro 반추위 발효실험을 통하여 버섯수확후배지의 적정 첨가수준을 규명하고자 수행되었다. In vitro 실험은 발효시간대를 3, 6, 9, 12, 24 및 48시간으로 설정하고, 각 처리구별로 3반복으로 발효 특성과 건물소화율이 측정되었다. In vitro 배양액의 pH는 배양시간이 길어짐에 따라 낮아지는 경향이었으며, 48시간 경과 시에는 버섯수확후배지 20%첨가구가 타 처리구에 비해 유의적(P<0.05)으로 낮았다. 가스발생량은 버섯 수확후배지 20%를 첨가한 S-20구의 6시간 및 12시간 발효구가 타 처리구에 비해 유의적(P<0.05)으로 높게 나타났다. 미생물 성장량은 배양시간이 경과함에 따라 줄어드는 경향이었으며, 발효 24시간대부터는 대체로 비슷한 수준에서 유지되었다. 건물소화율은 20-30%수준으로 버섯수확후배지의 첨가비율이 높을수록 낮았는데, S-40구의 경우는 발효 9시간이후로 지속적으로 증가되어 48시간 발효 시에는 S-20구와 비슷한 수준이 된 반면, S-60구에서는 전 발효기간 동안 건물소화율이 매우 낮은 상태에 있었다. 이전 보고에서 사일리지 발효상태는 S-40구가 좋았으나 in vitro 반추위 소화시험의 결과를 고려할 때, 수수 사일리지 제조 시 팽이버섯수확후배지 첨가비율은 20-30%수준으로 하는 것이 적당할 것으로 판단된다.

키워드

Flammulina velutipes;In vitro;Spent mushroom substrates;Whole crop sorghum silage

참고문헌

  1. Ahn SK, Goo YM, Ko KH, Lee SJ, Moon YH, Lee SS, Kim JW, Lee SS. 2014a. Effects of herbal medicine byproducts on rumen fermentation characteristics in vitro. J Agric & Life Sci. 48:89-100.
  2. Ahn SK, Goo YM, Ko KH, Lee SJ, Moon YH, Lee SS, Kim JW, Lee SS. 2014b. Study on the evaluation of nutritional values and antioxidant activities for herbal medicine by-products. J Agric & Life Sci. 48:101-110. https://doi.org/10.14397/jals.2014.48.2.101
  3. A.O.A.C. 1995. Official methods of analysis 16th edition. Association of official analytical chemists, Washington. D.C.
  4. Bae JS, Kim YI, Jung SH, Oh YG, Kwak WS. 2006. Evaluation on feed-nutritional value of spent mushroom (Pleurotus osteratus, Pleurotus eryngii, Flammulina velutupes) substrates as a roughage source for ruminants. J Anim Sci & Technol Kor. 48:237-246. https://doi.org/10.5187/JAST.2006.48.2.237
  5. Beuvink JMW, Spoelstra SF. 1992. Interactions between substrate, fermentation end-products, buffering systems and gas production upon fermentation of different carbohydrates by mixed rumen microorganisms in vitro. Appl Microbiol Biotechnol. 37:505-509.
  6. Blaxter KL, Clapperton JL. 1965. Prediction of the amount of methane produced by ruminants. Br J Nutr. 19:511-522. https://doi.org/10.1079/BJN19650046
  7. Bryant MP, Burkey LA. 1953. Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. J Dairy Sci. 36:205-217. https://doi.org/10.3168/jds.S0022-0302(53)91482-9
  8. Choi KC, Song CE. 2011. Effects of Harvest Stages and Ensiling method on nutritive values and quality of sorghum$\times$sorghum hybrid silage. J Kor Grassl Forage sci. 31:295-304. https://doi.org/10.5333/KGFS.2011.31.3.295
  9. Dehority BA. 1965. Degradation and utilization of isolated hemicellulose by pure cultures of cellulolytic rumen bacteria. J Bacteriol. 89:1515-1520.
  10. Dehority BA, Scott HW. 1967. Extent of cellulose and hemicellulose digestion in various forage by pure cultures of rumen bacteria. J Dairy Sci. 50:1136-1141. https://doi.org/10.3168/jds.S0022-0302(67)87579-9
  11. Duncan DB. 1955. Multiple range and multiple F tests. Biometrics 11:1-42. https://doi.org/10.2307/3001478
  12. Ehaliotis C, Zervakis GI, Karavitis P. 2005. Residues and by-products of olive-oil mills for root-zone heating and plant nutrition in organic vegetable production. Sci Hortic. 106:293-308. https://doi.org/10.1016/j.scienta.2005.04.006
  13. Fedorak PM, Hrwdey SE. 1983. A simple apparatus for measuring gas production by methanogenic cultures in serum bottles. Environ Technol Lett. 4:425-432. https://doi.org/10.1080/09593338309384228
  14. Georing HK, VanSoest PJ. 1970. Forage fiber analysis. Ag. Handbook. No. 379. ARS. USDA. Washington, D.C.
  15. Kim HS, Park JK, Kim HY, Kim SB, Shin YH, Kim CH, Ahn JH. 2011. Effects of dietary herbaceous peat on in vitro fermentation and milk production in dairy cows. J Kor Grassl Forage sci. 31:177-190. https://doi.org/10.5333/KGFS.2011.31.2.177
  16. Kim JD, Lee HJ, Jeon KH, Yang KY, Kwon CH, Sung HG, Hwangbo S, Jo IH. 2010. Effect of harvest stage, wilting and crushed rice on the forage production and silage quality of organic whole crop barely. J Kor Grassl Forage sci. 30:25-34. https://doi.org/10.5333/KGFS.2010.30.1.025
  17. Lee SJ, Lee JH, Shin NH, Han JH, Hyun JH, Moon YH, Lee SS. 2009. Effects of steam flaking of corns imported from USA and india on the in vitro fermentation characteristic and the mycotixin contents of logistic processing line. J Life Sci. 19:65-74. https://doi.org/10.5352/JLS.2009.19.1.065
  18. Lim HJ, Kim JD, Lee HJ, Jeon KH, Yang KY, Kwon CH, Yoon YS. 2009. Effect of pre-wilting on the forage quality of organic sorghum$\times$sudangrass silage. Korean J Organic Agri. 17:519-527.
  19. Moon YH, Kim SC, Cho WK, Lee SS, Cho SJ. 2014. Effects of supplementation of spent mushroom (Flammulina velutipes) substrates on the fermentative quality of rye silage. J Mushrooms 12:138-143. https://doi.org/10.14480/JM.2014.12.2.138
  20. Moore, J.E. 1970. Procedures for the two-stage in vitro digestion of forages. in: p. 5501. Nutrition Research Techniques for Domestic and Wild Animals, Vol. 1. L.E. Harris, Utah State Univ., Logan.
  21. Mould FL, Orskov ER, Mann SO. 1983. Associative effects of mixed feeds. I. effects of type and level of supplementation and the influence of the rumen fluid pH on cellulolysis in vivo and dry matter digestion of various roughages. Anim Feed Sci Technol. 10:15-30. https://doi.org/10.1016/0377-8401(83)90003-2
  22. Nocek JE. 1988. In situ and other methods to estimate ruminal protein and energy digestibility. A review. J Dairy Sci. 71:2051-2069, https://doi.org/10.3168/jds.S0022-0302(88)79781-7
  23. SAS. 1999. SAS/STAT software for PC. Release 8.01. SAS institute Inc., Cary, N.C., U.S.A.
  24. Strobel HJ, Russell JB. 1986. Effect of pH and energy spilling on bacterial protein synthesis by carbohydratelimited cultures of mixed rumen bacteria. J Dairy Sci. 69:2941-2947. https://doi.org/10.3168/jds.S0022-0302(86)80750-0
  25. Theodorou MK, Lowman RS, Davies ZS, Cuddeford D, Owen E. 1998. Principles of techniques that rely on gas measurement in ruminant nutrition. In: Deaville ER, Owen E, Adesogan AT, Rymer C, Huntington JA, Lawrence TLJ. (Eds.), In vitro Techniques for Measuring Nutrient Supply to Ruminants. Occasional publication, No. 22 Bri Soc Anim Sci, pp. 55-64.
  26. Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol. 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  27. Tilley JMA, Terry RA. 1963. A two-sage technique for the in vitro digesiton of forage crops. J Brit Grassl Soc. 18:104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  28. Williams BC, McMullan JT, McCahey S. 2001. An initial assessment of spent mushroom compost as a potential energy feedstock. Biores Technol. 79:227-230. https://doi.org/10.1016/S0960-8524(01)00073-6
  29. Zinn RA. 1990. Influence of flake density on the comparative feeding value of steam-flaked corn for feedlot cattle. J Anim Sci. 68:767-775. https://doi.org/10.2527/1990.683767x
  30. Zinn RA, Adams CF, Tamayo MS. 1995. Interaction of feed intake level on comparative ruminal and total tract digestion of dry-rolled and steam-flaked corn. J Anim Sci. 73:1239-1245. https://doi.org/10.2527/1995.7351239x

과제정보

연구 과제 주관 기관 : 농촌진흥청