Fabrication of NiO-Y:BaZrO3 Composite Anode for Thin Film-Protonic Ceramic Fuel Cells using Tape-Casting

  • Bae, Kiho (School of Mechanical Engineering, Korea University) ;
  • Noh, Ho-Sung (High-temperature Energy Materials Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jang, Dong Young (School of Mechanical Engineering, Korea University) ;
  • Kim, Manjin (School of Mechanical Engineering, Korea University) ;
  • Kim, Hyun Joong (School of Mechanical Engineering, Korea University) ;
  • Hong, Jongsup (High-temperature Energy Materials Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Jong-Ho (High-temperature Energy Materials Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Byung-Kook (High-temperature Energy Materials Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Son, Ji-Won (High-temperature Energy Materials Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Shim, Joon Hyung (School of Mechanical Engineering, Korea University)
  • Received : 2015.07.23
  • Accepted : 2015.08.07
  • Published : 2015.09.30


Optimization of the fabrication process of NiO-yttrium doped barium zirconate (BZY) composite anode substrates using tape-casting for high performance thin-film protonic ceramic fuel cells (PCFCs) is investigated. The anode substrate is composed of a tens of microns-thick anode functional layer laminated over a porous anode substrate. The macro-pore structure of the anode support is induced by micron-scale polymethyl methacrylate (PMMA) pore formers. Thermal gravity analysis (TGA) and a dilatometer are used to determine the polymeric additive burn-out and sintering temperatures. Crystallinity and microstructure of the tape-cast NiO-BZY anode are analyzed after the sintering.


NiO-BZY;Protonic ceramic fuel cells;Composite anode supports;Tape-casting


Supported by : National Research Foundation (NRF) of Korea


  1. B. C. H. Steele and A. Heinzel, "Materials for Fuel-cell Technologies," Nature, 414 [6861] 345-52 (2001).
  2. E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011).
  3. S. C. Singhal, "Solid Oxide Fuel Cells : Designs, Materials, and Applications," J. Korean Ceram. Soc., 42 [12] 777-86 (2005).
  4. R. J. Gorte, S. Park, J. M. Vohs, and C. Wang, "Anodes for Direct Oxidation of Dry Hydrocarbons in a Solid-oxide Fuel Cell," Adv. Mater., 12 [19] 1465-69 (2000).<1465::AID-ADMA1465>3.0.CO;2-9
  5. Z. Shao, S. M. Haile, J. Ahn, P. D. Ronney, Z. Zhan, and S. A. Barnett, "A Thermally Self-sustained Micro Solid-oxide Fuel-cell Stack with High Power Density," Nature, 435 [7043] 795-98 (2005).
  6. H. Yokokawa, T. Horita, K. Yamaji, H. Kishimoto, and M. E. Brito, "Degradation of SOFC Cell/Stack Performance in Relation to Materials Deterioration," J. Korean Ceram. Soc., 49 [1] 11-8 (2012).
  7. K. Park, S. Yu, J. Bae, H. Kim, and Y. Ko, "Fast Performance Degradation of SOFC Caused by Cathode Delamination in Long-term Testing," Int. J. Hydrogen Energ., 35 [16] 8670-77 (2010).
  8. Y.-S. Chou and J. W. Stevenson, "Thermal Cycling and Degradation Mechanisms of Compressive Mica-based Seals for Solid Oxide Fuel Cells," J. Power Sources, 112 [2] 376- 83 (2002).
  9. H.-S. Noh, J.-W. Son, H. Lee, H.-R. Kim, J.-H. Lee, and H.- W. Lee, "Thin Film $(La_{0.7}Sr_{0.3})_{0.95}MnO_{3-{\delta}}$ Fabricated by Pulsed Laser Deposition and Its Application as a Solid Oxide Fuel Cell Cathode for Low-temperature Operation," J. Korean Ceram. Soc., 47 [1] 75-81 (2010).
  10. H.-S. Noh, J.-W. Son, H. Lee, H.-S. Song, H.-W. Lee, and J.- H. Lee, "Low Temperature Performance Improvement of SOFC with Thin Film Electrolyte and Electrodes Fabricated by Pulsed Laser Deposition," J. Electrochem. Soc., 156 [12] B1484-90 (2009).
  11. H.-S. Noh, J.-W. Son, H. Lee, H.-I. Ji, J.-H. Lee, and H.-W. Lee, "Suppression of Ni Agglomeration in PLD Fabricated Ni-YSZ Composite for Surface Modification of SOFC Anode," J. Eur. Ceram. Soc., 30 [16] 3415-23 (2010).
  12. Y. J. Leng, S. H. Chan, K. A. Khor, and S. P. Jiang, "Performance Evaluation of Anode-supported Solid Oxide Fuel Cells with Thin Film YSZ Electrolyte," Int. J. Hydrogen Energ., 29 [10] 1025-33 (2004).
  13. A. Leonide, V. Sonn, A. Weber, and E. Ivers-Tiffee, "Evaluation and Modeling of the Cell Resistance in Anode-Supported Solid Oxide Fuel Cells," J. Electrochem. Soc., 155 [1] B36-41 (2008).
  14. J. H. Shim, C. C. Chao, H. Huang, and F. B. Prinz, "Atomic Layer Deposition of Yttria-stabilized Zirconia for Solid Oxide Fuel Cells," Chem. Mater., 19 [15] 3850-54 (2007).
  15. A. Evans, A. Bieberle-Hütter, J. L. M. Rupp, and L. J. Gauckler, "Review on Microfabricated Micro-solid Oxide Fuel Cell Membranes," J. Power Sources, 194 [1] 119-29 (2009).
  16. K. Bae, D. Y. Jang, H. J. Jung, J. W. Kim, J. W. Son, and J. H. Shim, "Micro Ceramic Fuel Cells with Multilayered Yttrium-doped Barium Cerate and Zirconate Thin Film Electrolytes," J. Power Sources, 248 1163-69 (2014).
  17. S. Primdahl and M. Mogensen, "Oxidation of Hydrogen on Ni/Yttria-Stabilized Zirconia Cermet Anodes," J. Electrochem. Soc., 144 [10] 3409-19 (1997).
  18. H. Iwahara, "Proton Conducting Ceramics and Their Applications," Solid State Ionics, 86-8 9-15 (1996).
  19. H. G. Bohn and T. Schober, "Electrical Conductivity of the High-temperature Proton Conductor BaZr(0.9)Y(0.1)O(2.95)," J. Am. Ceram. Soc., 83 [4] 768-72 (2000).
  20. K. D. Kreuer, "Proton-conducting Oxides," Annu. Rev. Mater. Res., 33 333-59 (2003).
  21. S.-J. Song, E. D. Wachsman, S. E. Dorris, and U. Balachandran, "Defect Chemistry Modeling of High-temperature Proton- conducting Cerates," Solid State Ionics, 149 [1-2] 1-10 (2002).
  22. T. Schober, W. Schilling, and H. Wenzl, "Defect Model of Proton Insertion into Oxides," Solid State Ionics, 86-88 Part 1 653-58 (1996).
  23. H. I. Ji, B. K. Kim, J. H. Yu, S. M. Choi, H. R. Kim, J. W. Son, H. W. Lee, and J. H. Lee, "Three Dimensional Representations of Partial Ionic and Electronic Conductivity Based on Defect Structure Analysis of BaZr0.85Y0.15O3- delta," Solid State Ionics, 203 [1] 9-17 (2011).
  24. K. H. Ryu and S. M. Haile, "Chemical Stability and Proton Conductivity of Doped $BaCeO_3-BaZrO_3$ Solid Solutions," Solid State Ionics, 125 [1-4] 355-67 (1999).
  25. S. Barison, M. Battagliarin, T. Cavallin, L. Doubova, M. Fabrizio, C. Mortalo, S. Boldrini, L. Malavasi, and R. Gerbasi, "High Conductivity and Chemical Stability of $BaCe_{1-x-y}Zr_xY_yO_{3-{\delta}}$ Proton Conductors Prepared by a Sol-gel Method," J. Mater. Chem., 18 [42] 5120-28 (2008).
  26. C. W. Kwon, J. W. Son, J. H. Lee, H. M. Kim, H. W. Lee, and K. B. Kim, "High-performance Micro-solid Oxide Fuel Cells Fabricated on Nanoporous Anodic Aluminum Oxide Templates," Adv. Funct. Mater., 21 [6] 1154-59 (2011).
  27. A. Mukherjee, B. Maiti, A. Das Sharma, R. N. Basu, and H. S. Maiti, "Correlation between Slurry Rheology, Green Density and Sintered Density of Tape Cast Yttria Stabilised Zirconia," Ceram. Int., 27 [7] 731-39 (2001).
  28. H. Moon, S. D. Kim, S. H. Hyun, and H. S. Kim, "Development of IT-SOFC Unit Cells with Anode-supported Thin Electrolytes via Tape Casting and Co-firing," Int. J. Hydrogen Energ., 33 [6] 1758-68 (2008).
  29. X. Huang and W. J. Brittain, "Synthesis and Characterization of PMMA Nanocomposites by Suspension and Emulsion Polymerization," Macromolecules, 34 [10] 3255-60 (2001).
  30. P. Babilo, T. Uda, and S. M. Haile, "Processing of Yttriumdoped Barium Zirconate for High Proton Conductivity," J. Mater. Res., 22 [5] 1322-30 (2007).
  31. P. Babilo and S. M. Haile, "Enhanced Sintering of Yttriumdoped Barium Zirconate by Addition of ZnO," J. Am. Ceram. Soc., 88 [9] 2362-68 (2005).
  32. F. F. Lange, "Constrained Network Model for Predicting Densification Behavior of Composite Powders," J. Mater. Res., 2 [01] 59-65 (1987).
  33. K. Bae, D. Y. Jang, H.-S. Noh, H. J. Kim, J. Hong, K. J. Yoon, B.-K. Kim, J.-W. Son, and J. H. Shim, "High-performance Protonic Ceramic Fuel Cells with Thin-film Yttriumdoped Barium Zirconate Electrolyte and Nickel Oxide- Yttrium-doped Barium Zirconate Interlayers," Adv. Energy Mater., submitted.

Cited by

  1. High-performance thin-film protonic ceramic fuel cells fabricated on anode supports with a non-proton-conducting ceramic matrix vol.4, pp.17, 2016,