Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study

  • Kwon, Hyunguk (Department of Chemical Engineering, University of Seoul) ;
  • Park, Jinwoo (Graphene Research Institute and Department of Physics, Sejong University) ;
  • Kim, Byung-Kook (High Temperature Energy Materials Center, Korea Institute of Science and Technology) ;
  • Han, Jeong Woo (Department of Chemical Engineering, University of Seoul)
  • Received : 2015.07.27
  • Accepted : 2015.08.31
  • Published : 2015.09.30


$LaBO_3$ (B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in $LaBO_3$ perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.


Supported by : National Research Foundation of Korea (NRF)


  1. N. Q. Minh, "Ceramic Fuel Cells," J. Am. Ceram. Soc., 76 [3] 563-88 (1993).
  2. B. C. H. Steele and A. Heinzel, "Materials for Fuel-cell Technologies," Nature, 414 [6861] 345-52 (2001).
  3. S. M. Haile, "Fuel Cell Materials and Components," Acta Mater., 51 [19] 5981-6000 (2003).
  4. E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011).
  5. M. M. Kuklja, E. A. Kotomin, R. Merkle, Y. A. Mastrikov, and J. Maier, "Combined Theoretical and Experimental Analysis of Processes Determining Cathode Performance in Solid Oxide Fuel Cells," Phys. Chem. Chem. Phys., 15 [15] 5443-71 (2013).
  6. Y. A. Mastrikov, M. M. Kuklja, E. A. Kotomin, and J. Maier, "First-principles Modelling of Complex Perovskite $(Ba_{1-x}Sr_x)(Co_{1-y}Fe_y)O_{3-{\delta}}$ for Solid Oxide Fuel Cell and Gas Separation Membrane Applications," Energy Environ. Sci., 3 [10] 1544-50 (2010).
  7. A. B. Munoz-Garcia, D. E. Bugaris, M. Pavone, J. P. Hodges, A. Huq, F. Chen, H. -C. zur Loye, and E. A. Carter, "Unveiling Structure-property Relationships in $Sr_2Fe_{1.5}Mo_{0.5}O_{6-{\delta}}$, an Electrode Material for Symmetric Solid Oxide Fuel Cells," J. Am. Chem. Soc., 134 [15] 6826-33 (2012).
  8. Z. Wang, R. Peng, W. Zhang, X. Wu, C. Xia, and Y. Lu, "Oxygen Reduction and Transport on the $La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{\delta}}$ Cathode in Solid Oxide Fuel Cells: A First-principles Study," J. Mater. Chem. A, 1 [41] 12932-40 (2013).
  9. S. B. Adler, "Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes," Chem. Rev., 104 4791-844 (2004).
  10. S. B. Adler, "Electrode Kinetics of Porous Mixed-conducting Oxygen Electrodes," J. Electrochem. Soc., 143 [11] 3554 (1996).
  11. S. B. Adler, "Mechanism and Kinetics of Oxygen Reduction on Porous $La_{1-x}Sr_xCoO_{3-{\delta}}$ Electrodes," Solid State Ionics, 111 [1-2] 125-34 (1998).
  12. S. Choi, S. Yoo, J. Kim, S. Park, A. Jun, S. Sengodan, J. Kim, J. Shin, H. Y. Jeong, Y. -M. Choi, G. Kim, and M. Liu, "Highly Efficient and Robust Cathode Materials for Lowtemperature Solid Oxide Fuel Cells: $PrBa_{0.5}Sr_{0.5}Co_{2-x}Fe_xO_{5+{\delta}}$," Sci. Rep., 3 (2013).
  13. S. Bao, C. Ma, G. Chen, X. Xu, E. Enriquez, C. Chen, Y. Zhang, J. L. Bettis Jr., M. -H. Whangbo, C. Dong, and Q. Zhang, "Ultrafast Atomic Layer-by-layer Oxygen Vacancyexchange Diffusion in Double-perovskite $LnBaCo_2O_{5.5+{\delta}}$ Thin Films," Sci. Rep., 4 4726 (2014).
  14. C. N. Munnings, S. J. Skinner, G. Amow, P. S. Whitfield, and I. J. Davidson, "Oxygen Transport in the $La_2Ni_{1-x}Co_xO_{4+{\delta}}$ System," Solid State Ionics, 176 [23-24] 1895-901 (2005).
  15. E. Boehm, J. -M. Bassat, P. Dordor, F. Mauvy, J. -C. Grenier, and Ph. Stevens, "Oxygen Diffusion and Transport Properties in Non-stoichiometric $Ln_{2-x}NiO_{4+{\delta}}$ Oxides," Solid State Ionics, 176 [37-38] 2717-25 (2005).
  16. J. W. Han and B. Yildiz, "Enhanced One Dimensional Mobility of Oxygen on Strained $LaCoO_3$(001) Surface," J. Mater. Chem., 21 [47] 18983 (2011).
  17. H. Jalili, J. W. Han, Y. Kuru, Z. Cai, and B. Yildiz, "New Insights into the Strain Coupling to Surface Chemistry, Electronic Structure, and Reactivity of $La_{0.7}Sr_{0.3}MnO_3$," J. Phys. Chem. Lett., 2 [7] 801-7 (2011).
  18. Z. Cai, Y. Kuru, J. W. Han, Y. Chen, and B. Yildiz, "Surface Electronic Structure Transitions at High Temperature on Perovskite Oxides: The Case of Strained $La_{0.8}Sr_{0.2}CoO_3$ Thin Films," J. Am. Chem. Soc., 133 [44] 17696-704 (2011).
  19. M. Kubicek, Z. Cai, W. Ma, B. Yildiz, H. Hutter, and J. Fleig, "Tensile Lattice Strain Accelerates Oxygen Surface Exchange and Diffusion in $La_{1-x}Sr_xCoO_{3-{\delta}}$ Thin Films," ACS Nano, 7 [4] 3276-86 (2013).
  20. J. L. M. Rupp, E. Fabbri, D. Marrocchelli, J. W. Han, D. Chen, E. Traversa, H. L. Tuller, and B. Yildiz, "Scalable Oxygen-ion Transport Kinetics in Metal-oxide Films: Impact of Thermally Induced Lattice Compaction in Acceptor Doped Ceria Films," Adv. Funct. Mater., 24 [11] 1562-74 (2014).
  21. X. Yue, A. Yan, M. Zhang, L. Liu, Y. Dong, and M. Chen, "Investigation on Scandium-Doped Manganate $La_{0.8}Sr_{0.2}Mn_{1-x}Sc_xO_{3-{\delta}}$ Cathode for Intermediate Temperature Solid Oxide Fuel Cells," J. Power Sources, 185 [2] 691-97 (2008).
  22. V. Dusastre and J. A. Kilner, "Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications," Solid State Ionics, 126 [1-2] 163-74 (1999).
  23. B. C. H. Steele, "Survey of Materials Selection for Ceramic Fuel Cells II. Cathodes and Anodes," Solid State Ionics, 86-88 1223-34 (1996).
  24. H. L. Tuller, "Semiconduction and Mixed Ionic-electronic Conduction in Nonstoichiometric Oxides: Impact and Control," Solid State Ionics, 94 [1-4] 63-74 (1997).
  25. M. Cherry, M. S. Islam, and C. R. A. Catlow, "Oxygen Ion Migration in Perovskite-type Oxides," J. Solid State Chem., 118 [1] 125-32 (1995).
  26. A. M. Ritzmann, A. B. Muñoz-García, M. Pavone, J. A. Keith, and E. A. Carter, "Ab Initio DFT+U Analysis of Oxygen Vacancy Formation and Migration in $La_{1-x}Sr_xFeO_{3-{\delta}}$ (x = 0, 0.25, 0.50)," Chem. Mater., 25 [15] 3011-19 (2013).
  27. A. B. Munoz-Garcia, M. Pavone, A. M. Ritzmann, and E. A. Carter, "Oxide Ion Transport in $Sr_2Fe_{1.5}Mo_{0.5}O_{6-{\delta}}$, A Mixed Ion-electron Conductor: New Insights from First Principles Modeling," Phys. Chem. Chem. Phys., 15 [17] 6250-59 (2013).
  28. A. B. Munoz-Garcia, A. M. Ritzmann, M. Pavone, J. A. Keith, and E. A. Carter, "Oxygen Transport in Perovskitetype Solid Oxide Fuel Cell Materials: Insights from Quantum Mechanics," Acc. Chem. Res., 47 [11] 3340-48 (2014).
  29. G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using a Plane-wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996).
  30. G. Kresse and J. Furthmüller, "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996).
  31. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865-68 (1996).
  32. E. A. Carter, "Challenges in Modeling Materials Properties without Experimental Input," Science, 321 [5890] 800-3 (2008).
  33. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, "Electron-energy-loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study," Phys. Rev. B, 57 [3] 1505-9 (1998).
  34. L. Wang, T. Maxisch, and G. Ceder, "Oxidation Energies of Transition Metal Oxides within the GGA+U Framework," Phys. Rev. B, 73 [19] 195107 (2006).
  35. H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin- zone Integrations," Phys. Rev. B, 13 [12] 5188-92 (1976).
  36. Y. -L. Lee and D. Morgan, "Ab Initio Defect Energetics of Perovskite (001) Surfaces for Solid Oxide Fuel Cells: A Comparative Study of $LaMnO_3$ versus $SrTiO_3$ and $LaAlO_3$," Phys. Rev. B, 91 [19] 195430 (2015).
  37. T. Mayeshiba and D. Morgan, "Strain Effects on Oxygen Migration in Perovskites," Phys. Chem. Chem. Phys., 17 [4] 2715-21 (2015).
  38. Y. -L. Lee, J. Kleis, J. Rossmeisl, Y. Shao-Horn, and D. Morgan, "Prediction of Solid Oxide Fuel Cell Cathode Activity with First-principles Descriptors," Energy Environ. Sci., 4 [10] 3966-70 (2011).
  39. J. Ko, H. Kwon, H. Kang, B. -K. Kim, and J. W. Han, "Universality in Surface Mixing Rule of Adsorption Strength for Small Adsorbates on Binary Transition Metal Alloys," Phys. Chem. Chem. Phys., 17 [5] 3123-30 (2015).
  40. M. Pavone, A. M. Ritzmann, and E. A. Carter, "Quantummechanics- based Design Principles for Solid Oxide Fuel Cell Cathode Materials," Energy Environ. Sci., 4 [12] 4933- 37 (2011).
  41. A. M. Deml, V. Stevanović, C. L. Muhich, C. B. Musgrave, and O'Hayre "Oxide Enthalpy of Formation and Band Gap Energy as Accurate Descriptors of Oxygen Vacancy Formation Energetics," Energy Environ. Sci., 7 [6] 1996-2004 (2014).
  42. G. Henkelman, B. P. Uberuaga, and H. Jonsson, "A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths," J. Chem. Phys., 113 [22] 9901 (2000).
  43. D. Sheppard, R. Terrell, and G. Henkelman, "Optimization Methods for Finding Minimum Energy Paths," J. Chem. Phys., 128 [13] 134106 (2008).
  44. J. W. Han and B. Yildiz, "Mechanism for Enhanced Oxygen Reduction Kinetics at the $(La,Sr)CoO_{3-{\delta}}/(La,Sr)_2CoO_{4+{\delta}}$ Hetero- interface," Energy Environ. Sci., 5 [9] 8598-607 (2012).
  45. J. H. Kuo, H. U. Anderson, and D. M. Sparlin, "Oxidationreduction Behavior of Undoped and Sr-Doped $LaMnO_3$ Nonstoichiometry and Defect Structure," J. Solid State Chem., 83 [1] 52-60 (1989).
  46. J. Nowotny and M. Rekas, "Defect Chemistry of (La,Sr) $MnO_3$," J. Am. Ceram. Soc., 81 [1] 67-80 (1998).
  47. J. Mizusaki, M. Yoshihiro, S. Yamauchi, and K. Fueki, "Nonstoichiometry and Defect Structure of the Perovskitetype Oxides $La_{1-x}Sr_xFeO_{3-{\delta}}$," J. Solid State Chem., 58 [2] 257-66 (1985).
  48. J. Mizusaki, Y. Mima, S. Yamauchi, and K. Fueki, "Nonstoichiometry of the Perovskite-type Oxides $La_{1-x}Sr_xCoO_{3-{\delta}}$," J. Solid State Chem., 80 [1] 102-111 (1989).
  49. Y. -L. Lee, K. Kleis, J. Rossmeisl, and D. Morgan, "Ab Initio Energetics of $LaBO_3$(001) (B = Mn, Fe, Co, and Ni) for Solid Oxide Fuel Cell Cathodes," Phys. Rev. B, 80 [22] 224101 (2009).
  50. M. S. Islam, "Computer Modelling of Defects and Transport in Perovskite Oxides," Solid State Ionics, 154-155 75-85 (2002).
  51. A. Jones and M. S. Islam, "Atomic-scale Insight into $LaFeO_3$ Perovskite: Defect Nanoclusters and Ion Migration," J. Phys. Chem. C, 112 [12] 4455-62 (2008).
  52. J. A. Kilner and R. J. Brook, "A Study of Oxygen Ion Conductivity in Doped Non-stoichiometric Oxides," Solid State Ionics, 6 [3] 237-52 (1982).
  53. M. S. Islam, "Ionic Transport in $ABO_3$ Perovskite Oxides: A Computer Modelling Tour," J. Mater. Chem., 10 [4] 1027-38 (2000).
  54. T. Ishigaki, S. Yamauchi, J. Mizusaki, K. Kueki, and H. Tamura, "Tracer Diffusion Coefficient of Oxide Ions in $LaCoO_3$ Single Crystal," J. Solid State Chem., 54 [1] 100-7 (1984).
  55. T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki, and K. Fueki, "Diffusion of Oxide Ion Vacancies in Perovskite-type Oxides," J. Solid State Chem., 73 [1] 179-87 (1988).
  56. S. Carter, A. Selcuk, R. J. Chater, J. Kajda, J. A. Kilner, and B. C. H. Steele, "Oxygen Transport in Selected Nonstoichiometric Perovskite-structure Oxides," Solid State Ionics, 53-56 597-605 (1992).
  57. I. Yasuda and M. Hishinuma, "Electrical Conductivity and Chemical Diffusion Coefficient of Strontium-doped Lanthanum Manganites," J. Solid State Chem., 123 [2] 382-90 (1996).
  58. Y. A. Mastrikov, R. Merkle, E. A. Kotomin, M. M. Kuklja, and J. Maier, "Formation and Migration of Oxygen Vacancies in $La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{\delta}}$ Perovskites: Insight from Ab Initio Calculations and Comparison with $Ba_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{\delta}}$," Phys. Chem. Chem. Phys., 15 [3] 911-18 (2013).
  59. V. V. Kharton, A. P. Viskup, D. M. Bochkov, E. N. Naumovich, and O. P. Reut, "Mixed Electronic and Ionic Conductivity of $LaCo(M)O_3$ (M = Ga, Cr, Fe or Ni): III. Diffusion of Oxygen through $LaCo_{1-x-y}Fe_xNi_yO_{3{\pm}{\delta}}$ Ceramics," Solid State Ionics, 110 [1-2] 61-68 (1998).
  60. M. Zinkevich and F. Aldinger, "Thermodynamic Analysis of the Ternary La-Ni-O System," J. Alloys Compd., 375 [1-2] 147-61 (2004).
  61. E. V. Tsipis, E. A. Kiselev, V. A. Kolotygin, J. C. Waerenborgh, V. A. Cherepanov, and V. V. Kharton, "Mixed Conductivity, Mössbauer Spectra and Thermal Expansion of $(La,Sr)(Fe,Ni)O_{3-{\delta}}$ Perovskites," Solid State Ionics, 179 [38] 2170-80 (2008).

Cited by

  1. vol.20, pp.28, 2018,