SNS에서 콘텐츠 오염자 탐지를 위한 개선된 특징 추출 방법

DOI QR코드

DOI QR Code

한진섭;박병준
Han, Jin Seop;Park, Byung Joon

  • 투고 : 2015.08.17
  • 심사 : 2015.11.02
  • 발행 : 2015.11.25

초록

인터넷의 발달과 스마트폰 등과 같은 휴대기기 보급의 확산으로 트위터, 페이스북과 같은 SNS 사용자의 수가 증가하고 있다. 그리고 이와 함께 상품 광고, 비방 및 성인 콘텐츠 등을 게재함으로써 SNS를 오염시키는 콘텐츠 오염 문제 또한 점차 커지고 있다. 따라서 본 논문은 SNS에서의 콘텐츠 오염자를 탐지하기 위한 개선된 콘텐츠 오염자의 특징 추출 방법을 제안한다. 특히, 본 논문은 콘텐츠 오염자의 예측 및 분류 단계에서 새로운 사용자 데이터의 특징 값을 효율적으로 추출하기 위하여 전체 데이터를 대상으로 하는 일괄 처리 방식이 아니라 데이터 증가분만을 고려하는 점진적 접근 방법에 기초한 콘텐츠 오염자 특징 추출 방법을 제안한다. 그리고 제안한 방법이 일괄 처리한 방법과 비교해서 분류 정확도는 유지되고 시간 효율성이 향상되는 것을 실험을 통해 비교 평가한다.

키워드

콘텐츠 오염자 탐지;점진적 처리;특징 추출

참고문헌

  1. Ito, J., Song, J., Toda, H., Koike, Y., and Oyama, S., "Assessment of Tweet Credibility with LDA Features", Proc. of the 24th International Conference on World Wide Web, pp.953-958, 2015.
  2. Jin Seop Han, Byung Joon Park, "Incremental Spammer Feature Extraction for the Spam Detection in Social Networking Service", International Journal of Applied Engineering Research, Vol. 10, No. 18, pp.39269-39273, 2015.
  3. Tsolmon, Bayar, and Kyung-Soon Lee, "An event extraction model based on timeline and user analysis in latent dirichlet allocation", Proc. of the 37th international ACM SIGIR conference on Research & development in information retrieval. ACM, pp.1187-1190, 2014.
  4. Sreedevi, M., Kumar, and G. V., "Parallel and Distributed Approach for Mining Closed Regular Patterns on Incremental Databases at User Thresholds", Proc. of the 2014 International Conference on Information and Communication Technology for Competitive Strategies, ACM, pp. 59-63, 2014.
  5. Chen, Y. C., Weng, J. T. Y., Wang, J. Z., Chou, C. L., Huang, J. L., and Lee, S. Y., "Incrementally Mining Temporal Patterns in Interval-based Databases", Data Science and Advanced Analytics (DSAA), pp. 304-311, 2014.
  6. Beutel, A., Xu, W., Guruswami, V., Palow, C., and Faloutsos, C., "CopyCatch: stopping group attacks by spotting lockstep behavior in social networks", Proc. of the 22nd international conference on World Wide Web, pp.119-130, 2013.
  7. Mehta, Gunjan, Deepa Sharma, and Ekta Chauhan, "Application of Incremental Mining and Apriori Algorithm on Library Transactional Database", International Journal of Computer Applications, pp. 73-78, 2013.
  8. Miray Kas, Matthew Wachs, Kathleen M. Carley, and L. Richard Carley, "Incremental Algorithm for Updating Betweenness Centrality in Dynamically Growing Networks", Proc. of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. ACM, pp. 33-40, 2013.
  9. Miray Kas, Kathleen M. Carley, L. and Richard Carley, "Incremental Closeness Centrality for Dynamically Changing Social Networks", Advances in Social Networks Analysis and Mining (ASONAM), pp. 1250-1258, 2013.
  10. Jin Seop Han, Byung Joon Park, "Efficient Detection of Content Polluters in Social Networks", IT Convergence and Security 2012(LNEE), pp. 991-996, 2013.
  11. Shah, Siddharth, N. C. Chauhan, and S. D. Bhander, "Incremental Mining of Association Rules: A Survey", International Journal of Computer Science and Information Technologies, Vol. 3, no. 3, pp. 4071-4074, 2012.
  12. Papadopoulos, S., Kompatsiaris, Y., Vakali, A., and Spyridonos, P., "Community detection in Social Media Performance and application considerations", Data Mining and Knowledge Discovery 24.(3), pp. 515-554, 2012. https://doi.org/10.1007/s10618-011-0224-z
  13. Hongyu Gao, Yan Chen, Kathy Lee, Diana Palsetia, and Alok Choudhary, "Towards Online Spam Filtering in Social Networks", Proc. of 19th Network Distributed System Security (NDSS) Symposium, http://www.internetsociety.org, 2012.
  14. Maarten Bosma, Edgar Meij, and Wouter Weerkamp, W., "A Framework for Unsupervised Spam Detection in Social Networking Sites", Proc. of European Conference on In-formation Retrieval (ECIR), pp. 364-375, 2012.
  15. Eibe Frank, Available from http://www.cs.waikato.ac.nz/ml/weka/downloading.html, 2012.
  16. Jonghyuk Song, Sangho Lee and Jong Kim, "Spam filtering in twitter using sender-receiver relationship", Proc. of the 14th International Symposium on Recent Advances in Intrusion Detection (RAID), pp. 301-317, 2011.
  17. KristoFer Beck, "Analyzing Tweets to Identify Malicious Messages", Proc. of Electro/Information Technology (EIT) IEEE International Conference, pp. 1-5, 2011.
  18. Kyumin Lee, Brian David Eoff, and James Caverlee, "Seven Months with the Devils: A Long-Term Study of Content Polluters on Twitter", Proc. of International AAAI Conference on Weblogs and Social Media (ICWSM), pp. 185-192, 2011.
  19. Saeed Abu-Nimeh, Thomas M. Chen, and Omar Alzubi, "Malicious and Spam Posts in Online Social Networks", IEEE Computer Society, Vol. 9, pp. 23-28, 2011.
  20. Muhammad Atif Qureshi, Tae-Seob Yun, Jeong-Hoon Lee, Kyu-Young Whang, "Improving the Quality of Web Spam Filtering by Using Seed Refinement", Journal of IEIE, CI, Vol. 48, no. 6, pp. 123-139, 2011.11.
  21. Seung-Hyun Seo, Taenam Cho, "Group Key Management Protocol for Secure Social Network Service", Journal of IEIE, CI, Vol. 48, no. 3, pp. 18-26, 2011.5.
  22. Chao Yang, Robert Chandler Harkreader, and Guofei Gu, "Die free or live hard? Empirical evaluation and new design for fighting evolving twitter spammers", Recent Advances in Intrusion Detection (RAID), Vol. 6961, pp.318-337, 2011.

과제정보

연구 과제 주관 기관 : 광운대학교