Inelastic analysis for the post-collapse behavior of concrete encased steel composite columns under axial compression

Ky, V.S.;Tangaramvong, S.;Thepchatri, T.

  • 투고 : 2015.01.26
  • 심사 : 2015.05.04
  • 발행 : 2015.11.25


This paper proposes a simple inelastic analysis approach to efficiently map out the complete nonlinear post-collapse (strain-softening) response and the maximum load capacity of axially loaded concrete encased steel composite columns (stub and slender). The scheme simultaneously incorporates the influences of difficult instabilizing phenomena such as concrete confinement, initial geometric imperfection, geometric nonlinearity, buckling of reinforcement bars and local buckling of structural steel, on the overall behavior of the composite columns. The proposed numerical method adopts fiber element discretization and an iterative M${\ddot{u}}$ller's algorithm with an additional adaptive technique that robustly yields solution convergence. The accuracy of the proposed analysis scheme is validated through comparisons with various available experimental benchmarks. Finally, a parametric study of various key parameters on the overall behaviors of the composite columns is conducted.


composite column;concrete confinement;concrete encased steel;geometry nonlinearity;inelastic analysis;post-buckling;strain-softening


  1. ACI 318M-11 (2011), Building code requirements for structural concrete and Commentary; American Concrete Institute.
  2. Anslijn, R. and Janss, J. (1974), "Le calcul de charges ultimes des colonnes metalliques enrobes de beton", C.R.I.F., Report MT89; Brussels, Belgium.
  3. Chen, C.C. and Yeh, S.C. (1996), "Ultimate strength of concrete encased steel composite columns", Proceedings of the 3rd National Conference on Structural Engineering, Kenting, Taiwan, September.
  4. Chen, S.F., Teng, J.G. and Chan, S.L. (2001), "Design of biaxially loaded short composite columns of arbitrary section", J. Struct. Eng., ASCE, 127(6), 678-685.
  5. Cheng, C.C. and Nan, J.L. (2006), "Analytical model for predicting axial capacity and behavior of concrete encased steel composite stub columns", J. Construct. Steel Res., 62(5), 424-433.
  6. Dong, K.K. (2005), "A database for composite columns", Master Thesis; Georgia Institute of Technology, Atlanta, GA, USA.
  7. El-Tawil, S. and Deierlein, G.G. (1999), "Strength and ductility of concrete encased composite columns", J. Struct. Eng., ASCE, 125(9), 1009-1019.
  8. El-Tawil, S., Sanz, P.C.F. and Deierlein, G.G. (1995), "Evaluation of ACI 318 and AISC (LRFD) strength provisions for composite beam-columns", J. Construct. Steel Res., 34(1), 103-123.
  9. Ellobody, E. and Young, B. (2011), "Numerical simulation of concrete encased steel composite columns", J. Construct. Steel Res., 67, 211-222.
  10. Eltobgy, H.H. (2013), "Structural design of steel fibre reinforced concrete in-filled steel circular columns", Steel Compos. Struct., Int. J., 14(3), 267-282.
  11. Gentian, Z., Yonghe, L., Bin, L., Gang, X., Zhuo, H. and Fubo, C. (2005), "Strength of slender steel reinforcement concrete composite columns", Adv. Steel Struct., 1, 623-628.
  12. Holzer, S.M., Melosh, R.J., Barker, R.M. and Somers, A.E. (1975), "SINDER: A computer code for general analysis of two-dimensional reinforced concrete structures", Report No. AFWL-TR-74-228; Volume 1, Air Force Weapons Laboratory, Kirt-land, AFB, NM, USA.
  13. Huang, F., Yu, X. and Chen, B. (2012), "The structural performance of axially loaded CFST columns under various loading conditions", Steel Compos. Struct., Int. J., 13(5), 451-471.
  14. Kwak, H., Kwak, H.G. and Kim, J.K. (2013), "Behavior of circular CFT columns subject to axial force and bending moment", Steel Compos. Struct., Int. J., 14(2), 173-190.
  15. Li, L., Sakai, J. and Matsui, C. (2003), "Seismic behavior of steel encased reinforced concrete beamcolumns", Proceedings of the International Conference on Advances in Structures, Sydney, Australia, June, pp. 1201-1207.
  16. Liang, Q.Q. (2011), "High strength circular concrete-filled steel tubular slender beam-columns, Part I: Numerical analysis", J. Construct. Steel Res., 67(2), 164-171.
  17. Liew, J.Y.R. (2001), "State-of-the-art of advanced inelastic analysis of steel and composite structures", Steel Compos. Struct., Int. J., 1(3), 341-354.
  18. Mander, J.B., Priestley, M.J.N. and Park, R. (1984), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., ASCE, 114(3), 1804-1826.
  19. Matsui, C. (1979), "Study on elastic-plastic behavior of concrete-encased columns subjected to eccentric axial thrust", Annual Assembly of Architectural Institute of Japan, pp. 1627-1628.
  20. Muller, D.E. (1956), "A method for solving algebraic equations using an automatic computer", MTAC, 10(56), 208-215.
  21. Patel, V.I., Liang, Q.Q. and Hadi, M.N.S. (2013), "High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part I: Modeling", J. Construct. Steel Res., 70, 377-384.
  22. Shakir, K.H. and Zeghiche, J. (1989), "Experimental behavior of concrete-filled rolled rectangular hollow-section columns", Struct. Eng., 67(19), 346-353.
  23. Shanmugam, N.E. and Lakshmi, B. (2001), "State of the art report on steel-concrete composite columns", J. Construct. Steel Res., 57(10), 1041-1080.
  24. Sheikh, S.A. and Uzumeri, S.M. (1982), "Analytical model for concrete confinement in tied columns", J. Struct. Div., ASCE, 108(12), 2703-2722.
  25. Spacone, E. and El-Tawil, S. (2004), "Nonlinear analysis of steel-concrete composite structures: State of the art", J. Struct. Eng., ASCE, 130(2), 159-168.
  26. Tokgoz, S. and Dundar, C. (2008), "Experimental tests on biaxially loaded concrete-encased composite columns", Steel Compos. Struct., Int. J., 8(5), 423-438.

피인용 문헌

  1. Nonlinear analysis of biaxially loaded rectangular concrete-filled stainless steel tubular slender beam-columns vol.140, 2017,
  2. Stress-transfer in concrete encased and filled tube square columns employed in top-down construction vol.22, pp.1, 2016,