DOI QR코드

DOI QR Code

ON A MULTI-PARAMETRIC GENERALIZATION OF THE UNIFORM ZERO-TWO LAW IN L1-SPACES

  • MUKHAMEDOV, FARRUKH (Department of Computational & Theoretical Sciences Faculty of Science, International Islamic University Malaysia)
  • Received : 2014.02.20
  • Published : 2015.11.30

Abstract

Following an idea of Ornstein and Sucheston, Foguel proved the so-called uniform "zero-two" law: let T : $L^1$(X, $\mathcal{F}$, ${\mu}$) ${\rightarrow}$ $L^1$(X, $\mathcal{F}$, ${\mu}$) be a positive contraction. If for some $m{\in}{\mathbb{N}}{\cup}\{0\}$ one has ${\parallel}T^{m+1}-T^m{\parallel}$ < 2, then $\lim_{n{\rightarrow}{\infty}}{\parallel}T^{m+1}-T^m{\parallel}=0$. There are many papers devoted to generalizations of this law. In the present paper we provide a multi-parametric generalization of the uniform zero-two law for $L^1$-contractions.

References

  1. M. Akcoglu and J. Baxter, Tail field representations and the zero-two law, Israel J. Math. 123 (2001), 253-272. https://doi.org/10.1007/BF02784130
  2. C. D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, 2006.
  3. Y. Derriennic, Lois "zero ou deux" pour les processes de Markov, Applications aux marches aleatoires, Ann. Inst. H. Poincare Sec. B 12 (1976), no. 2, 111-129.
  4. S. R. Foguel, On the "zero-two" law, Israel J. Math. 10 (1971), 275-280. https://doi.org/10.1007/BF02771644
  5. S. R. Foguel, More on the "zero-two" law, Proc. Amer. Math. Soc. 61 (1976), no. 2, 262-264. https://doi.org/10.1090/S0002-9939-1976-0428076-2
  6. S. R. Foguel, A generalized 0-2 law, Israel J. Math. 45 (1983), no. 2-3, 219-224. https://doi.org/10.1007/BF02774018
  7. B. Jamison and S. Orey, Markov chains recurrent in the sense of Harris, Z. Wahrsch. Verw. Geb. 8 (1967), 41-48. https://doi.org/10.1007/BF00533943
  8. Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), no. 3, 313-328. https://doi.org/10.1016/0022-1236(86)90101-1
  9. U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, 1985.
  10. M. Lin, On the "zero-two" law for conservative Markov operators, Z. Wahrsch. Verw. Geb. 61 (1982), no. 4, 513-525. https://doi.org/10.1007/BF00531621
  11. M. Lin, The uniform zero-two law for positive operators in Banach lattices, Studia Math. 131 (1998), no. 2, 149-153. https://doi.org/10.4064/sm-131-2-149-153
  12. F. Mukhamedov, On dominant contractions and a generalization of the zero-two law, Positivity 15 (2011), no. 3, 497-508. https://doi.org/10.1007/s11117-010-0102-8
  13. D. Orstein and L. Sucheston, An operator theorem on $L_1$ convergence to zero with applications to Markov operators, Ann. Math. Statist. 41 (1970), 1631-1639. https://doi.org/10.1214/aoms/1177696806
  14. H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, 1974.
  15. H. H. Schaefer, The zero-two law for positive contractions is valid in all Banach lattices, Israel J. Math. 59 (1987), no. 2, 241-244. https://doi.org/10.1007/BF02787265
  16. A. Schep, A remark on the uniform zero-two law for positive contractions, Arch. Math. (Basel) 53 (1989), no. 5, 493-496. https://doi.org/10.1007/BF01324724
  17. R. Wittmann, Analogues of the "zero-two" law for positive linear contractions in $L_p$ and C(X), Israel J. Math. 59 (1987), no. 1, 8-28. https://doi.org/10.1007/BF02779664
  18. R. Wittmann, Ein starkes "Null-Zwei"-Gesetz in $L_p$, Math. Z. 197 (1988), no. 2, 223-229. https://doi.org/10.1007/BF01215191
  19. R. Zaharopol, The modulus of a regular linear operator and the 'zero-two' law in $L^p$- spaces (1 < p < +${\infty}$, p 6 ${\not=}$ 2), J. Funct. Anal. 68 (1986), no. 3, 300-312. https://doi.org/10.1016/0022-1236(86)90100-X
  20. R. Zaharopol, On the 'zero-two' law for positive contractions, Proc. Edinburgh Math. Soc. (2) 32 (1989), no. 3, 363-370. https://doi.org/10.1017/S0013091500004624
  21. R. Zaharopol, A local zero-two law and some applications, Turkish J. Math. 24 (2000), no. 1, 109-120.

Cited by

  1. On a genaralized uniform zero-two law for positive contractions of non-commutativeL1-spaces vol.697, 2016, https://doi.org/10.1088/1742-6596/697/1/012003