DOI QR코드

DOI QR Code

MULTICOMPLEXES, BOUNDED COHOMOLOGY AND ADDITIVITY OF SIMPLICIAL VOLUME

  • KUESSNER, THILO (Korea Institute for Advanced Study)
  • Received : 2014.07.01
  • Published : 2015.11.30

Abstract

We discuss some additivity properties of the simplicial volume for manifolds with boundary: we give proofs of additivity for glueing amenable boundary components and of superadditivity for glueing amenable submanifolds of the boundary, and we discuss doubling of 3-manifolds.

Keywords

simplicial volume

References

  1. M. Bucher, M. Burger, R. Frigerio, A. Iozzi, C. Pagliantini, and M. B. Pozzetti, Isometric embeddings in bounded cohomology, J. Topol. Anal. 6 (2014), no. 1, 1-25. https://doi.org/10.1142/S1793525314500058
  2. M. Bucher, R. Frigerio, and C. Pagliantini, The simplicial volume of 3-manifolds with boundary, J. Topol. 8 (2015), no. 2, 457-475. https://doi.org/10.1112/jtopol/jtv001
  3. M. Gromov, Volume and bounded cohomology, Publ. Math. Inst. Hautes Etudes Sci. (1982), no. 56, 5-99
  4. N. Ivanov, Foundations of the theory of bounded cohomology, J. Sov. Math. 37 (1987), 1090-1114. https://doi.org/10.1007/BF01086634
  5. D. Jungreis, Chains that realize the Gromov invariant of hyperbolic manifolds, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 643-648. https://doi.org/10.1017/S0143385797084939
  6. S. Kim and T. Kuessner, Simplicial volume of compact manifolds with amenable boundary, J. Topol. Anal. 7 (2015), no. 1, 23-46. https://doi.org/10.1142/S1793525315500028
  7. T. Kuessner, Gromov Volume of Compact Manifolds, Diplomarbeit, FU Berlin, 1996.
  8. T. Kuessner, Efficient fundamental cycles of cusped hyperbolic manifolds, Pacific J. Math. 211 (2003), no. 2 283-314. https://doi.org/10.2140/pjm.2003.211.283
  9. T. Kuessner, Generalizations of Agol's inequality and nonexistence of tight laminations, Pacific J. Math. 251 (2011), no. 1, 109-172. https://doi.org/10.2140/pjm.2011.251.109
  10. S. Matsumoto and S. Morita, Bounded cohomology of certain groups of homeomorphisms, Proc. Amer. Math. Soc. 94 (1985), no. 3, 539-544. https://doi.org/10.1090/S0002-9939-1985-0787909-6
  11. J. P. May, Simplicial objects in algebraic topology, Chicago Lect. Math., UCP, 1992.
  12. W. Neumann and G. Swarup, Canonical decompositions of 3-manifolds, Geom. Topol. 1 (1997), 21-40. https://doi.org/10.2140/gt.1997.1.21
  13. H. Park, Relative bounded cohomology, Topology Appl. 131 (2003), no. 3, 203-234. https://doi.org/10.1016/S0166-8641(02)00339-5
  14. T. Soma, The Gromov invariant of links, Invent. Math. 64 (1981), no. 3, 445-454. https://doi.org/10.1007/BF01389276
  15. W. Thurston, The geometry and topology of 3-manifolds, Lecture Notes; http://msri.org /publications/books/gt3m.

Cited by

  1. A quantitative version of a theorem by Jungreis vol.187, pp.1, 2017, https://doi.org/10.1007/s10711-016-0197-6