• JIANG, YUE-PING (School of Mathematics and Econometrics Hunan University) ;
  • RASILA, ANTTI (Department of Mathematics and Systems Analysis Aalto University) ;
  • SUN, YONG (School of Mathematics and Econometrics Hunan University)
  • Received : 2014.08.19
  • Published : 2015.11.30


In this paper, we study right half-plane harmonic mappings $f_0$ and f, where $f_0$ is fIxed and f is such that its dilatation of a conformal automorphism of the unit disk. We obtain a sufficient condition for the convolution of such mappings to be convex in the direction of the real axis. The result of the paper is a generalization of the result of by Li and Ponnusamy [11], which itself originates from a problem posed by Dorff et al. in [7].


  1. O. P. Ahuja and J. M. Jahangiri, Convolutions for special classes of harmonic univalent functions, Appl. Math. Lett. 16 (2003), no. 6, 905-909.
  2. R. M. Ali, B. A. Stephen, and K. G. Subramanian, Subclass of harmonic mappings de ned by convolution, Appl. Math. Lett. 23 (2010), no. 10, 1243-1247.
  3. D. Bshouty and A. Lyzzaik, Problems and conjectures in planar harmonic mappings, J. Anal. 18 (2010), 69-81.
  4. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I Math. 9 (1984), 3-25.
  5. A. Cohn, Uber die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise, Math. Z. 14 (1922), no. 1, 110-148.
  6. M. Dorff, Convolutions of planar harmonic convex mappings, Complex Var. Theory Appl. 45 (2001), no. 3, 263-271.
  7. M. Dorff, M. Nowak, and M.Wo loszkiewicz, Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ. 57 (2012), no. 5, 489-503.
  8. P. Duren, Harmonic Mappings in the Plane, Cambridge University Press, Cambridge, 2004.
  9. M. Goodloe, Hadamard products of convex harmonic mappings, Complex Var. Theory Appl. 47 (2002), no. 2, 81-92.
  10. R. Kumar, S. Gupta, S. Singh, and M. Dor , On harmonic convolutions involving a vertical strip mapping, Bull. Korean Math. Soc. 52 (2015), no. 1, 105-123.
  11. L.-L. Li and S. Ponnusamy, Solution to an open problem on convolutions of harmonic mappings, Complex Var. Elliptic Equ. 58 (2013), no. 12, 1647-1653.
  12. L.-L. Li and S. Ponnusamy, Convolutions of slanted half-plane harmonic mappings, Analysis (Munich) 33 (2013), no. 2, 159-176.

Cited by

  1. Univalency of Convolutions of Univalent Harmonic Right Half-Plane Mappings vol.17, pp.2, 2017,